

Using UML and OCL Models to realize High-Level Digital Twins

Paula Muñoz Universidad de Málaga, Spain **Javier Troya** Universidad de Málaga, Spain

Antonio Vallecillo

Universidad de Málaga, Spain

What is a Digital Twin? Digital Twin (DT) Physical Twin (PT) Data Control A Digital Twin is a comprehensive digital representation of an actual system,

service or product (the Physical Twin), synchronized at a specified frequency and fidelity [1].

Our approach

Digital Twins are **pretty complex software** systems since they need to emulate the actual physical system faithfully

Raise the level of abstraction using **software models** during their development

A framework for defining and deploying DTs

A framework for defining and deploying DTs

Data Lake

- It connects the PT and DT
- It implements the Blackboard architectural pattern

Drivers

Transform the data into formats that each component understands

Service components

 Implement additional functionality for the system (dashboards, IA algorithms)

Analysis components

Implement different type of tests on the physical entity, the twin or even on service components

Implementation of the framework: UML Model of the Car

Implementation of the framework: Snapshots

Implementation of the framework: Data Lake

redis

twinld : executionId : timestamp

HGETALL NXJCar:1627484055:1627484375			
1)	"twinId"	"NXJCar"	
3)	"bump"	4) "0"	
5)	"processingQueue"	6) "0"	
7)	"light"	8) "45"	
9)	"angle"	10) "-0,52"	
11)	"executionId"	12) "162748405	5"
13)	"yPos"	14) "-0"	
15)	"speedFactor"	16) "31,28"	
17)	"isMoving"	18) "0"	
19)	"xPos"	20) "0"	
21)	"action"	22) "Rotate"	
23)	"distance"	24) "40"	
25)	"timestamp"	26) "162748437	5"
	_		

Implementation of the framework: Connections

Implementation of the framework: Example of Analysis component

Summary and conclusions

In our contribution, we show how it is possible to use **UML and OCL models** for the specification of DTs to **verify their expected behavior** in the early stages of development.

Advantages

- □ The framework allows **replacing the high-level models with lower-level implementations**
- □ The DT model can be specified at **the needed fidelity level** depending on the type of analysis that we want to perform.

□ It also allows to **analyze and validate any part of the software** independently

Future work

- □ Validate the proposal with **further physical systems**
- Create more **analysis and services modules**.
- Evaluate the framework performance under stressful conditions to determine its scalability and applicability to larger systems

Thank you for your attention

Using UML and OCL Models to realize High-Level Digital Twins

<u>Paula Muñoz</u>

Universidad de Málaga, Spain

Javier Troya Universidad de Málaga, Spain

Antonio Vallecillo

Universidad de Málaga, Spain