1st International Workshop on Modeling Language Engineering and Execution | Munich, 2019-09-17

A Proposal of Features to Support
Analysis and Debugging of
Declarative Model Transformations
with Graphical Syntax
by Embedded Visualizations

Florian Ege, Matthias Tichy

5P

Institute of Software Engineering
and Programming Languages
Ulm University

A Proposal of Features to Support Analysis and Debugging of Declarative
Model Transformations with Graphical Syntax by Embedded Visualizations

Florian Ege

Manthias Tichy

Inst. of Saftware Engineering and Programming Longuages Inst. of Software Engineering and Programming Languages

Ul Universiry

florian.egefuni-olm. de

Abstract—In model-driven software engineering (MDSE),
chains of medel transformations are wsed to tum a source
mardel via a series of intermediate models into a target artifact.
At times such a transformation chain does not deliver the
expected result, either because a particular transformation step
fails due to unmet preconditions, or the produced target artifact
i not the desired one. To better understand the transformation
process, and to locate and correct defects in the models or
transformations involved, developers need appropriate tool
support for analysis and debugging. MDSE tools provide a
spectrum of techniques for analysis. These range from maodel
checking approaches for proving logical properties of trans-
formations to low-level stepwise debugging functionality that
expises how particular algorithms, eg., graph matching, are
implemented. However, these existing analysis features often do
not present concrete suggestions directed at locating and fixing
defects, or require developers to reason about their models and
transformations in a procedural way. We focos on declarative
maodel-to-model transformations with graphical syntax and
consider defects located in source models or transformation
specifications. For each of those defects. we sketch how a
specific approach hased on visualizing information integrated
in the graphical syntax conld support identifying and fixing
that defect. These technigues aim towards enabling developers
to analyze mdels and transformations on the same level of
ahsiraction and with representations in the same syntax they
normally work with.

Keywards-declarative model transformations, graphical syn-
tax, analysis, debugging

I. INTRODUCTION
Madel-driven software engineering (MDSE) aims at deal-
ing with complexity by providing a higher level of absirac-
ton for designing software systems. In MDSE, develop-
ers create domain-specific high-level models. Intermediate
artifacts, like lower-level maodels or textual source code

are then automatically denved from high-level models by
applying model ransformations. Model transformations are
expressed in ransformation languages that follow particular
programming paradigms and have their own specific wex-
tual or graphical syntax (cf. [1]). Declarative. endoge:
muwde] transformations, as implemented by Henshin [2], are
specified by defining a set of model elements that should
be matched against a part of the source model and some
modifications related to those elements. The tanget model

COus

Ulm University

matthias. tichyfuni-ulm. de

is then constructed by applying the modifications on the
matched part of the source model, whereby elements can be
preserved, removed. new ones created, or their atiribules be
maddified. At the level of abstraction, at which developers
work, they see a declarative transformation as an atomic
madification of a part of the source model w create the
target model. The declurative definition doesn’t specily a
detailed operational semantics, ie. a specific execution
order of buasic transformation steps (matching, creation,
removal or modification of model clements). Declarative
definitions express a transformation by specifying how the
target model 15 structured in contrast w how exactly it is
created procedurally. Developers don't need w care about
those details, while 1t is lef Lo the underlying translormation
engine to perform this efficiently. This constitutes the main
advantage of declarative specifications. However, on the
other hand this abstract view makes it difficult 1w debug
incorreet models or transformations (el [3]). Although
most developers are familiar with debugging techniques for
imperative programming languages, like stepping through
statements, these are not directly applicable 1o declarative
transformations. Imperative languages are based on an exe-
cution maodel that ransforms program state by a sequence
of steps. This fits the implementation of algorithms in the
transformation engine, but not the declarative atomic view
on trnsfomations that developers have. In this paper, we
focus on declarative transformations with graphical syntax.
We discuss some problems that we experience regularly
when working with model wansformations, e.g., why a
transformation is not applicable (o 4 model, and propose
features that use visualizations embedded in the graphical
syntax to aid in analysis and debugging. To illustrate oor
approach, we consider 4 simple use case of endogeneous
transformations as a running example. After looking at
related work in Sec. II. we introduce our running example
in Sec. IIL In Sec. IV, we then propose features 10 support
analysis and debugging at the level of abstraction of models
and transformation artifacts by sketching how visualizing
information embedded in the graphical syntax of models and
transformation specilications can be used o suggest, e.g.
how an artifact could be modified 1o make a ransformation

_ 1st International Workshop on Modeling Language Engineering and Execution | Munich, 2019-09-17

Motivation

"Conceptual break” in the context of debugging declarative model
transformations with graphical syntax:

level of abstraction and semantics that developers work on
VS.
level that is used for debugging

_ 1st International Workshop on Modeling Language Engineering and Execution | Munich, 2019-09-17

Related Work

* Stepwise debugging, analogue to debuggers for imperative languages
- breakpoints
- visualization of intermediate states of matching
- rollbacks

- transformation of transformations to other formalisms
(e.g., transformation nets)

... but all these expose engine internals:
imperative graph matching algorithm, sequence of low-level operations

* Model checking, verification of properties

.. rather analytical than constructive (in terms of actually fixing defects)

.. 1st International Workshop on Modeling Language Engineering and Execution | Munich, 2019-09-17

Idea: Embedded Visualizations

Facilitate analysis and debugging by presenting information integrated in the
graphical syntax of instance models and transformation rule specifications

— avoid conceptual break by staying on the same level of abstraction
— develop and debug using the same graphical syntax

_ 1st International Workshop on Modeling Language Engineering and Execution | Munich, 2019-09-17

Running Example: Pizza DSL

(PizzaOrder) ::= (PizzaSpec) ©)
| (PizzaSpec) and (PizzaOrder) ©) I"e"t
(PizzaSpec) ::= Pizza (Name) ©) 1% 0..*
| Pizza with (Toppings) ® > Symbol <
| Pizza (Name) without (Toppings) ® derived{ordered}
| Pizza (Name) with (Toppings) ®)
| Pizza (Name) without (Toppings) with (Toppings) Q) Variable Token
, . A JAN
(Toppings) ::= (Topping) ® _ _
| (Topping) , (Toppings) ® PizzaOrderVar ToppingsVar NameToken PizzaToken
lue: Stri
(Name) ::= Capricciosa | Margherita | Rustica | ... (1) e :
. . _ _ . PizzaSpecVar ToppingVar WithToken
(Topping) ::= Artichokes | Garlic | Olives | Peperoni | ... (1) ToppingToken
This grammar derives sentences like the following: +value: String WithoutToken
o Pizza with Mushrooms, Onions, Parmigiano NameVar
o Pizza Contadina without Asparagus
o Pizza Funghi without Parsley, Olives with Ruccola and Pizza AndToken CommaToken

Hawaii without Ananas with Mozzarella, Oregano

1st International Workshop on Modeling Language Engineering and Execution | Munich, 2019-09-17

Running Example: Pizza DSL

[= Rule PizzaSpec(pizzaToken, nameVar, withToken, toppingsVar1, withToken, toppingsVar2)

. <create> .
<create> derived|first] <create> derived[last]

<create> derived

v Y Y Y

- PizzaToken}EXpw] - NameVar IEx—tbzwnhuutTuken&th - ToppingsVar [2XLge{ - WithToken [2€X4g{ : ToppingsVar

:
Symbol | <create> next 1 <create> next | Symbol
]
. 1 .
derived|last] + | / * derived]first]
1
1
Symbol Symbol | t | Symbol —®»| Symbol
! next
| ®
<create> derived
<create> derived @ <create> derived
<create> derived @ <create> derived
e <create>|derived
s
’f
ra
rd
’
Fi
V4
‘
!
! <create>
<create> “s <Create> H e ~. . <create> ,
next .+~ <create> “seaext ["X 7 <createdlderived s next S
4 .
g derived - - S

\'\. | ! f’ -~

” " ’[N

: NameToken - : ToppingToken “’ e : ToppingToken
nextyy, - withToken FEXLp. nexXtyy, f- commaToken|2EXtp

value="Margherita" value="Peperoni" value="0lives"

: PizzaToken X 1pm-

- 1st International Workshop on Modeling Language Engineering and Execution | Munich, 2019-09-17

Debugging Scenarios

* Rule specification is correct, expected matches in source model
do not occur due to defects in the model

* Instance model is correct, expected matches do not occur
due to incorrect transformation rule specification

- 1st International Workshop on Modeling Language Engineering and Execution | Munich, 2019-09-17

Incorrect Instance Model

* Heatmap for Degree of Matching

— suggests parts that "almost match" - potential location for fix

(= Rule PizzaSpec(pizzaToken, nameVar, withToken, toppingsVar1, withToken, toppingsVar2)

. <create>
<create> derived|first]

l

<create> derived[last]

<create> derived

Y

v

v

Y

|

: PizzaToken| "l Namevar ["X!p: WithoutToken| "2l : ToppingsVar ["€XLg{ ; WithToken [?€X!pm! : ToppingsVar
- PizzaToken 24! - WithToken |"®*! | : ToppingsVar
e e e[e
R — P P — e

_ 1st International Workshop on Modeling Language Engineering and Execution | Munich, 2019-09-17

Incorrect Instance Model

* Suggestion of modifications of the instance model (with heatmap)

- find "minimal” fix that makes rules applicable

: PizzaToken next : WithoutToken M.- : ToppingsVar Mﬁ- : WithToken Mb- : ToppingsVar

next

: NameVar | next

:PizzaTokenﬂe—nh- : NameVar next : WithToken ﬂeitb- : ToppingsVar ned :WithoutTokenM.- . ToppingsVar

:PizzaToken&xtb : NameVar De—nh:WithoutTokean : ToppingsVar next : WithToken _ne_xt._ : ToppingsVar

.I:. 1st International Workshop on Modeling Language Engineering and Execution | Munich, 2019-09-17

Incorrect Rule Specification

* .. well, basically analogue approaches
- highlighting parts of rule that would match (i.e. be applicable)
- suggestions of edits for left-hand side of rule to make it match

- heatmap coloring for degrees of matching or closeness of edit distance

.I. 1st International Workshop on Modeling Language Engineering and Execution | Munich, 2019-09-17

Validity Considerations

* Running example is very basic

— cognitive scalability?

* Real-world models are often quite large
- features for views/filtering to reduce number of displayed elements

- support for browsing between relevant parts of model

.’ 1st International Workshop on Modeling Language Engineering and Execution | Munich, 2019-09-17

Future Work

* Integration of proposed features into Henshin

- User Study:
Speedup for representative debugging tasks vs. existing approaches?

* Considered so far: "Box-and-Line" languages

- transfer to different graphical syntaxes, e.g., with nested structures

* QOther visual cues
- indicators for numbers of matches

- repeatability of transformations

—_ I: PizzaTokenIne)(t I: WithoutTokenIMDl : ToppingsVar |M>| . WithToken next . ToppingsVar

next

|: PizzaTokenlMPl : WithToken |next | : ToppingsVar |

__ I: PizzaTokenIMbl - NameVar |next | : WithToken IMH : ToppingsVar |next |:WithoutT0ken next : ToppingsVar

|next |: WithoutToken next : AndToken I_>next

|: Piznggkgnl"ext | - NameVar

|: PizzaTDkEﬂIMH; Wi]h;;ujTngnInext | : ToppingsVar |next |M|next | - ToppingsVar | I: PizzaTokenIMDI - NameVar JReXt :WithoutTokenlﬂt-Dl : ToppingsVar |next |:WithT0ken next - ToppingsVar

