
Stockholm
Västerås

Eskilstuna

Executable Modelling for
Highly Parallel Accelerators

Lorenzo Addazi - Federico Ciccozzi - Björn Lisper
School of Innovation, Design and Engineering
Mälardalen University
Västerås, Sweden

High-Performance Embedded Systems
● Large and ever-increasing need for computational power in resource-

constrained embedded systems, e.g. autonomous driving applications

● Hardware acceleration to offload heavy tasks from CPUs to dedicated
computer hardware:
● Graphical Processing Units (GPUs)
● Field-Programmable Gate Arrays (FPGAs)
● Application-Specific Integrated Circuits (ASICs)

2

So, what is the problem?
● Numerous architectures with different programming models
● Complex
● Low level of abstraction
● Explicit parallelism

● Lack of appropriate support
● Languages – high-level programming languages
● Tools – parallel debuggers, etc.

● Unacceptable risks for safety-critical embedded applications

3

Our idea

● High-level data-parallel executable modelling language
based on fUML/ALF
● Reusability/Flexibility

same code, different accelerators
● Early Analysis

continuous feedback during development
● Code Generation

hardware-specific code generated from models

4

Data-Parallel Programming Model
Programs expressed as compositions of collective operations on
homogeneous data structures, e.g. arrays, lists

5

● Implicit Parallelism
● Composition of inherently parallel primitives

● No Race Conditions, No Deadlocks
● Deterministic single flow of control

● Sequential Cost Analysis Techniques
● Costs assigned to primitives

● Clear/Succint Code
● Programs expressed ~Algorithm level

Why fUML/ALF?

6

● Standard
● UML is a de-facto standard in software industry and an ISO/IEC (19505)

standard
● fUML provides a precise execution semantics for a subset of UML
● The Alf action language allows to express complex execution behaviours

● Platform-Independent
● High-level and platform-independent essence inherited from UML

● Flexible
● Seamless integration with UML and Profiles

● Executable
● Different execution semantics à wide support for development activities
● Interpretative/Compilative – Simulation and debugging
● Translational – Target-specific deployment and execution

● Analysable

Challenges

7

● Implicit Parallelism in Alf
● Introducing implicit data-parallel primitives in Alf
● Currently, @parallel annotation in combination with block and for

statements provide support for explicit parallelism
● fUML Mapping
● Mapping data-parallel primitives to fUML without disrupting its execution

semantics, which is already inherently concurrent for activities
● Object-oriented + Data-parallel = ?

Ongoing Work

8

● Alf Implementation
● Xtext + LLVM Front-End

● Integrating Object-oriented and Data-parallel
● Existing similar approaches in the literature (e.g. Scala)

● Modelling heterogeneous massively parallel architectures and
software/hardware allocations using (f)UML and MARTE

Thank you!

Questions?

9

Data-parallel Primitives

● Element-wise Scalar Operation

● Parallel Read (Get Communication)

● Parallel Write (Send Communication)

● Replication (Flooding)

● Masking (Selection)

● Reduce

● Scan (Parallel Prefix)

10

Element-wise Scalar Operation
Take one (or several) data structure, and apply a ”scalar”
operation to the respective elements in each position. The result
is a new data structure.

Example

for all k in parallel do C[k] := A[k] + B[k]

11

Parallel Read (Get Communication)
A parallel read operation, where each processor k reads the
element of a data structure from some other processor G[k]:

Example

for all k in parallel do A[k] := B[G[k]]

12

Parallel Write (Send Communication)
A parallel send (or write) operation, where each processor k sends
the element of a data structure to some target processor G[k]:

Example

for all k in parallel do A[G[k]] := B[k]

13

Replication (Flooding)
Replication means to duplicate a single piece of data to many
processors, can be seen as special case of get communication.

Example

for all k in parallel do X[k] := Y

14

Masking (Selection)
Masking means to select a part of a data structure for some data
parallel operation with respect to some boolean mask or guard.

Example

for all k where X[k] < 0 in parallel do X[k] := -X[k]

15

Reduce
Let op be a binary, associative operation (e.g. add, min, etc) and
X a data structure with positions 0,..,n-1 (e.g. array), then

reduce(op, X) = X[0] op ... op X[n - 1]

Since op is associative, the evaluation can be done according to a
balanced tree in O(log n) time with O(n) processors

16

Scan (Parallel Prefix)
Close relative to reduce, computes an array of all partial sums

scan(op, X) = [X[0], X[0] op X[1],...,X[0] op...op X[n - 1]]

Also scan can be evaluated in O(log n) time on O(n) processors,
according to a set of balanced binary trees with shared subtrees:

17

