
TrueChange™ under the hood: how we check the
consistency of large models (almost) instantly

Hugo Lourenço
Principal Software Engineer, OutSystems

hugo.lourenco@outsystems.com

Rui Eugénio
Lead Software Engineer, OutSystems

rui.eugenio@outsystems.com

Abstract—The OutSystems Platform is a visual model-driven
development and delivery platform that allows developers to
create enterprise-grade web and mobile applications.

The models created with the platform are translated by
its compiler into a set of standard-technology artifacts (C#,
JavaScript, SQL, etc). The model must be checked for consistency
(i.e., that it is well-formed and well-typed) before compilation can
proceed. Our Integrated Development Environment (IDE) does
this in real-time: after each change made a developer, the IDE
either automatically heals the other parts of the model that are
impacted by the change, or provides immediate feedback on the
errors that must be manually corrected.

It is not uncommon for an OutSystems model to contain in
excess of 200,000 individual elements. Handling large models
efficiently is thus of paramount importance: consistency checks
must run as fast as possible, otherwise the developer’s experience
is significantly impaired.

In this paper we present the techniques we have developed
to speed up consistency checks, and which resulted in the
TrueChange™ engine. We use an incremental approached paired
with automatically managed back pointers. We believe these
techniques are of general application and not limited to our
particular case.

Index Terms—consistency check, large models, model driven
development, domain specific language

I. INTRODUCTION

The OutSystems Platform [5] is a visual model-driven
development and delivery platform that allows developers to
create enterprise-grade web and mobile applications. Using
Service Studio, the platform’s IDE, it is possible to design in a
single place all the aspects of an application, including, among
others, its user interfaces, business logic, database models, and
integration with external systems (e.g., via REST services).
Each of these aspects is developed using its own (type-safe)
domain specific language. An OutSystems model can thus be
seen as consisting of several interdependent sub-models.

The OutSystems Platform is used by its clients to create
very large applications. OutSystems promotes and encourages
the use of Agile methodologies [1], and consequently it is
extremely important to allow developers to be highly produc-
tive and efficient not only when creating applications but also,
and more importantly, when changing them to adapt to new
business needs.

This need is addressed in two main ways. Firstly, the Out-
Systems language is strongly typed. As it is well known, using
a strongly typed language makes changing applications safer
and faster, as a significant amount of errors can be detected

and forcibly fixed at design-time rather than at run-time. A
simple example is changing a function’s input parameter from
optional to mandatory. All function calls will be in a state of
error if the corresponding argument’s value is not filled in.

Secondly, the model is inspected for possible inconsisten-
cies. These are not necessarily errors, but are nonetheless
issues that the developer must act upon because they may for
instance impact the usability of the application. An example
of this is warning developers if they place too many remote
calls in an application’s startup method, or if the maximum
length of an input field in a form doesn’t match the maximum
length of the corresponding database entity attribute.

The TrueChange™ engine is the component of Service
Studio that inspects and fixes the model in real-time. When
a developer changes the model, TrueChange™ provides im-
mediate feedback on the impact of the change and, in many
cases, it is able to automatically apply corrective measures.
As applications created with the OutSystems Platform can be
very large (models containing more than 200,000 elements
are not uncommon - see Table I), having a high performant
TrueChange™ was a top priority.

Our main approach is to run the engine incrementally,
analyzing only the parts of the model that have changed or
are known to be affected by a change. We call the latter
the verification dependencies. E.g., the verify dependencies
of an input parameter includes all arguments referring to it:
whenever the parameter’s type changes, or when an optional
parameter is made mandatory, we need to re-check all those
arguments. TrueChange™ speed is dependent on calculating
verification dependencies quickly and efficiently. In this paper
we’ll present the data structure we designed to make this
possible.

The remainder of the paper is organized as follows. In
section II we briefly introduce the OutSystems language and
the internal representation of our models. The TrueChange™
engine is presented in section III. We conclude the paper by
evaluating the impact of TrueChange™ in section IV and with
some final remarks.

II. THE OUTSYSTEMS LANGUAGE

The OutSystems language [4] is a visual language. Devel-
opers use Service Studio, the OutSystems Platform IDE, to
visually design all the layers of their web or mobile appli-
cations, and then publish them to the OutSystems Platform



server (see Figure 1). The OutSystems compiler generates all
the required artifacts (C#, JavaScript, SQL scripts, etc) and
deploys them to the application server and database. At that
point the application can be accessed by the end-users through
their devices.

Fig. 1. The OutSystems Platform

In this paper, and for simplicity, we’ll focus our attention
on a subset of the OutSystems language consisting of Actions
[3]. Actions are used to design business logic, and are very
similar to methods in textual languages such as C# or Java.
The OutSystems language supports several different kinds of
actions, including client actions (which run in the client device,
be it a smartphone, tablet, or browser) and server actions
(which run in the server).

In Figure 2 we illustrate Service Studio’s user interface.
The Logic tab is selected and action ProcessRequest is being
edited. Actions are represented as directed graphs. The nodes
that can be used to create an action are depicted in the toolbox
on the left. In our example, action ProcessRequest consists of
three nodes: Start, SendEmail, and End. Start and End have
the expected role: they mark the beginning and end of the
action, respectively. SendMail is a Run Server Action node.
These nodes are used to invoke (call) another action. In this
case we’re invoking action SendEmail which, as can be seen
in the tree to the right, is defined in the same application.
This action expects a single input parameter, EmailAddress.
The parameter is currently selected in the tree, and thus its
properties are being displayed in the box below the tree. As
we can see, the parameter is of type Email and is mandatory.

A. Meta-model
OutSystems models are persisted and transported as binary

XML files. In memory (both when being edited in Service
Studio or while being processed by the platform’s compiler),
a model is represented as an objects graph.

Although OutSystems supports and develops a particular
concrete language, we designed the language from the ground

up to be easily extensible. The language’s meta-model is
represented as a XML file, from which we generate the model
classes. In Listing 1 we present an abridged and simplified
version of the meta-model used to specify Actions. For the sake
of completeness, an equally abridged and simplified version
of the meta-model’s meta-model is presented in Listing 2.

1 <MetaModel xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"

2 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
3 xsi:schemaLocation="http://www.outsystems.com

MetaModel.xsd">
4

5 <Class name="ESpace">
6 <Property name="Name" type="Text" />
7 <Child name="Actions" type="Action" />
8 </Class>
9

10 <Class name="Action">
11 <Property name="Name" type="Text" />
12 <Child name="InputParameters" type="

InputParameter" />
13 <Child name="Nodes" type="ActionNode" />
14 </Class>
15

16 <Class name="InputParameter" >
17 <Property name="Name" type="Text" />
18 <Property name="Type" type="Type" />
19 <Property name="IsMandatory" type="Bool" />
20 </Class>
21

22 <Class name="ActionNode">
23 <Property name="Target" type ="ActionNode" />
24 </Class>
25

26 <Class name="Start" base="ActionNode" />
27 <Class name="End" base="ActionNode" />
28

29 <Class name="Execute" base="ActionNode">
30 <Property name="Action" type="Action" />
31 <Child name="Arguments" type="Argument" />
32 </Class>
33

34 <Class name="Argument" verifyDependencies="
Parameter.IsMandatory, Parameter.Type">

35 <Property name="Parameter" type="
InputParameter" />

36 <Property name="Value" type="Expression"
isOptional="true" />

37 </Class>
38 </MetaModel>

Listing 1. Meta-model for Actions

1 <xs:schema elementFormDefault="qualified" xmlns:
xs="http://www.w3.org/2001/XMLSchema">

2 <xs:element name="MetaModel">
3 <xs:complexType>
4 <xs:choice minOccurs="1"
5 maxOccurs="unbounded">
6 <xs:element name="Class" type="Class" />
7 </xs:choice>
8 </xs:complexType>
9 </xs:element>

10

11 <xs:complexType name="Class">
12 <xs:choice minOccurs="0"
13 maxOccurs="unbounded">
14 <xs:element name="Property" type="Prop" />
15 <xs:element name="Child" type="Child" />
16 </xs:choice>
17 <xs:attribute name="name" type="xs:string"

use="required" />



Fig. 2. Service Studio interface. Action ProcessRequest is being edited and parameter SendEmail.EmailAddress is selected in the tree.

18 <xs:attribute name="base" type="xs:string" />
19 <xs:attribute name="verifyDependencies"
20 type="xs:string" />
21 </xs:complexType>
22

23 <xs:complexType name="Prop">
24 <xs:attribute name="name" type="xs:string"
25 use="required" />
26 <xs:attribute name="type" type="xs:string"
27 use="required" />
28 <!-- a missing value is interpreted as "false

" -->
29 <xs:attribute name="isOptional" type="xs:

boolean" />
30 </xs:complexType>
31

32 <xs:complexType name="Child">
33 <xs:attribute name="name" type="xs:string"

use="required" />
34 <xs:attribute name="type" type="xs:string"

use="required" />
35 <!-- a missing value is interpreted as "false

" -->
36 <xs:attribute name="isSingleton" type="xs:

boolean" />
37 </xs:complexType>
38 </xs:schema>

Listing 2. Meta-model for the meta-model

Listing 1 should be easy to follow (some of the attributes,
namely verifyDependencies in line 34, will be discussed in
section III). We’re declaring several classes, including ESpace,
which corresponds to an application module, and Action. For
each class we declare their Properties and Children. In UML
terminology, properties are attributes and children represent
aggregation relations. For instance, class Action has, or is
made up of, a set of InputParameter and a set of ActionNode
(lines 12 and 13 in Listing 1). The Execute class represents the
Run Server Action node discussed above. It declares a property,
Action, to store the action being executed, and a collection
of Argument. An Argument refers a particular parameter and
provides a value for it. The classes declared in the meta-model
can be used as the type for properties and collections in other
classes.

B. Model classes

The meta-model is not directly used in its XML form.
Instead, both Service Studio and the compiler use C# classes
that we generate from the meta-model. The generated model
classes include a substantial amount of predefined behavior,
such as code for load, save, copy/paste, merge, and verify. In
Listing 3 we illustrate a bare-bones version of the generated



classes that, for compactness reasons, doesn’t include any of
the behavior just enumerated.

Since the meta-model is an input to the model classes
generator, it is possible to define a completely new language by
defining its corresponding meta-model. All of these potential
languages share some common characteristics, and depend
on a set of non-generated classes that are referred to in
Listing 3. These include class Type for types, class Expression
for expressions, and class ModelObject class, which is the base
class for all model classes. Model class instances store an
auto-generated id that uniquely identifies the instance inside a
particular model.

1 using System.Collections.Generic;
2 using OutSystems.BaseModel;
3

4 namespace OutSystems.Model {
5

6 partial class ESpace : ModelObject {
7 public string Name { get; set; }
8 public List<Action> Actions { get; };
9 }

10

11 partial class Action : ModelObject {
12 public string Name { get; set; }
13 public List<InputParameter> InputParameters {

get; };
14 public List<ActionNode> Nodes { get; };
15 }
16

17 partial class InputParameter : ModelObject {
18 public string Name { get; set; }
19 public Type Type { get; set; }
20 public bool IsMandatory { get; set; }
21 }
22

23 partial class ActionNode : ModelObject {
24 public ActionNode Target { get; set; }
25 }
26

27 partial class Start : ActionNode { }
28

29 partial class End : ActionNode { }
30

31 partial class Execute : ActionNode {
32 public Action Action { get; set; }
33 public List<Argument> Arguments { get; };
34 }
35

36 partial class Argument : ModelObject {
37 public InputParameter Parameter { get; set; }
38 public Expression Value { get; set; }
39 }
40 }

Listing 3. Generated model classes

C. Models
As mentioned above, an OutSystems model is represented

in memory as an object graph whose entry-point (the main
object) is an instance of class ESpace, and is persisted as a
binary XML file. It should come as no surprise that a model’s
XML representation is a serialization of the objects graph.

Consider the example illustrated in Figure 2, which consists
of actions SendEmail and ProcessRequest. The corresponding
model is presented in Listing 4. For simplicity and compact-
ness, action SendEmail has no nodes. As you can easily check,

this model conforms to the meta-model presented in Listing 1.
The representation for object references consists of the target
object’s type and its id. For instance, in line 12 the value
for the action attribute is interpreted as the instance of the
Action class with id 4, which correspond to action SendEmail
in line 4 1. Notice that in this model we’re not providing a
value for the argument in line 14. As we’ll see later on, this
will be detected as an error, since the corresponding parameter
(InputParameter:5, line 6) is declared to be mandatory.

1 <Model>
2 <ESpace id="1" name="Contacts">
3 <Actions>
4 <Action id="4" name="SendEmail">
5 <InputParameters>
6 <InputParameter id="5" isMandatory="true"

name="EmailAddress" type="Type:3" />
7 </InputParameters>
8 </Action>
9 <Action id="6" name="ProcessRequest">

10 <Nodes>
11 <Start id="7" target="Execute:8" />
12 <Execute action="Action:4" id="8" target=

"End:9">
13 <Arguments>
14 <Argument id="10" parameter="

InputParameter:5" />
15 </Arguments>
16 </Execute>
17 <End id="9" />
18 </Nodes>
19 </Action>
20 </Actions>
21 </ESpace>
22 </Model>

Listing 4. Model example

III. TRUECHANGE™

TrueChange™ is the sub-component of Service Studio
responsible for checking the model for consistency. Part of its
work is akin to syntactic and semantic analysis in traditional
languages: it checks if the model is well-formed (e.g, do all
Start nodes have exactly one outgoing arrow) and well-typed
(e.g., are all action arguments of a type compatible with their
corresponding argument)2. It also detects and warns about
many other problems, including potential performance issues.

Most of the work is actually delegated on the model classes,
and TrueChange™ acts as a “supervisor” or “bookkeeper”. A
substantial part of the work is carried out by code that is
generated from the meta-model. This includes, e.g., handling
mandatory vs optional properties, value ranges, collections
cardinality, etc. For the cases not covered by the model classes
generator we can provide a manual implementation. We thus
have two approaches in what concerns specifying consistency
checks: we can declare them in the meta-model, or code them.

An example of a manually coded consistency check is
presented in Listing 5, where we present the verify code for the
Argument class. This code validates that a value is provided

1The actual representation used by the real OutSystems model is richer and
more complex, but that is outside the scope of this paper.

2This is akin to syntactic and semantic checking in textual languages.



if the parameter is mandatory, and that when a value is set
it must be compatible with the parameter’s type. In the case
of the model in Listing 4, calling CalculateVerifyMessages on
action ProcessRequest would return the following message:

Error: A valid expression must be set for parameter
’EmailAddress’.

1 using OutSystems.BaseModel;
2 using System.Collections.Generic;
3

4 namespace OutSystems.Model {
5 partial class Argument {
6

7 protected override IEnumerable<VerifyMessage>
CalculateVerifyMessages() {

8 if (Parameter.IsMandatory && Value == null){
9 yield return new VerifyMessage() {

10 Kind = VerifyMessageKind.Error,
11 Text = $"A valid expression must be set

for parameter ’{Parameter.Name}’."
12 };
13 }
14

15 if (Value != null && !Value.Type.
IsConvertibleTo(Parameter.Type)) {

16 yield return new VerifyMessage() {
17 Kind = VerifyMessageKind.Error,
18 Text = $"’{Parameter.Type.Name}’ required

instead of ’{Value.Type.Name}’."
19 };
20 }
21 }
22 }
23 }

Listing 5. Verify code for class Argument

A. Incremental verification

It is not feasible to check the whole model every time
anything changes. We use a cache mechanism instead. In
Listing 6 we present an abridged and simplified version of
the code that powers TrueChange™. For each object we keep
track of its verify messages (field verifyMessages, line 18)
and if these are up to date (field isVerified, line 19). The
Verify method returns the object’s verify messages, calling
CalculateVerifyMessages if needed to calculate them.

1 using System.Collections.Generic;
2 using System.Linq;
3

4 namespace OutSystems.BaseModel {
5 enum VerifyMessageKind {
6 Warning,
7 Error
8 }
9

10 class VerifyMessage {
11 public VerifyMessageKind Kind;
12 public string Text;
13

14 public override string ToString() => $"{Kind
}: {Text}";

15 }
16

17 partial class ModelObject {
18 VerifyMessage[] verifyMessages;
19 protected bool isVerified = false;
20

21 List<ModelObject> referers = new List<
ModelObject>();

22

23 public IEnumerable<VerifyMessage> Verify() {
24 if (!isVerified) {
25 verifyMessages = CalculateVerifyMessages()

.ToArray();
26 isVerified = true;
27 }
28 return verifyMessages;
29 }
30

31 protected virtual IEnumerable<VerifyMessage>
CalculateVerifyMessages() {

32 yield break;
33 }
34

35 protected void InvalidateReferers() {
36 foreach (var obj in referers) {
37 obj.isVerified = false;
38 }
39 }
40

41 // called when a property is being changed
from "oldValue" to "newValue"

42 protected void UpdateReferers(ModelObject
oldValue, ModelObject newValue) {

43 if (oldValue != null) {
44 oldValue.referers.Remove(this);
45 }
46 if (newValue != null) {
47 newValue.referers.Add(this);
48 }
49 }
50 }
51 }

Listing 6. TrueChange™ basic functionality

The general rule for a model object is that if any of its
properties or collections changes then it needs to be re-verified
3. The model classes generator includes the code necessary to
set isVerified to false when changing the model. A subset of
such code is presented in Listing 7 for the properties of classes
InputParameter and Argument (this is a more detailed version
of the code previously presented in Listing 3). As you can see,
whenever a property is changed we set isVerified to false.

In subsection III-B we present and discuss the fields and
methods that we skipped over both in Listing 6 and Listing 7.

1 using OutSystems.BaseModel;
2

3 namespace OutSystems.Model {
4

5 partial class InputParameter : ModelObject {
6 // Name and Type properties ommitted
7 // for brevity
8

9 private bool _isMandatory;
10 public bool IsMandatory {
11 get => _isMandatory;
12 set {
13 if (_isMandatory != value) {
14 InvalidateReferers();
15 _isMandatory = value;
16 isVerified = false;
17 }
18 }
19 }

3We’re over-simplifying given the limited scope of this paper.



20 }
21

22 partial class Argument : ModelObject {
23 private InputParameter _parameter;
24 public InputParameter Parameter {
25 get => _parameter;
26 set {
27 if (_parameter != value) {
28 UpdateReferers(_parameter, value);
29 _parameter = value;
30 isVerified = false;
31 }
32 }
33 }
34

35 private Expression _value;
36 public Expression Value {
37 get => _value;
38 set {
39 if (_value != value) {
40 UpdateReferers(_value, value);
41 _value = value;
42 isVerified = false;
43 }
44 }
45 }
46 }
47 }

Listing 7. Generated code for tracking model changes

B. Referers

At this point there’s still a puzzle piece missing: how can we
efficiently propagate the effects of a local model change? As
we discussed previously, our model in Listing 4 is in a state of
error: the argument for the mandatory parameter EmailAddress
is not filled in. There are two ways in which the developer can
make this error disappear:

• By acting locally in the argument, setting the value
of property Expression. This is readily detected by
TrueChange™, since the argument’s own isVerified is set
to false by the setter for property Expression.

• By acting non-locally in the parameter, making it op-
tional. For incremental verification to work in this case
we need to ensure that all arguments referring to the
parameter are marked as needing validation (i.e., that we
set their isVerified field to false).

The purpose of the referers structure that we skipped over
on the previous listings is optimizing the second case. For each
model object we keep the list of the other model objects that
refer to it through their properties. This is vaguely similar to
the purpose of the HTTP referer header [2] (the misspelling
in our case is coincidental): this optional header identifies the
URL of the web page that links to resource being requested.

Referrers can be seen as back-pointers. By keeping them
we can very quickly navigate back in the model. Our model
classes generator takes advantage of information provided in
the meta-model to include additional operations in the property
setters (see Listing 7):

• When setting a property which refers to another model
object we update its referers list (lines 28 and 40, and
method UpdateReferers in Listing 6). Notice that this

means that referers are managed in a completed auto-
mated way and pose no burden on the teams developing
Service Studio.

• When setting a property that corresponds to a verifcation
dependency (specified through the verifyDependencies
attribute in the meta-model) we invalidate all the refer-
ring objects (line 14 and method InvalidateReferers in
Listing 6).

In our meta-model (Listing 1, line 34) we’ve specified that
class Argument has two verifaction dependencies: Parame-
ter.IsMandatory and Parameter.Type. With this we’re stating
that whenever the properties IsMandatory or Type of the input
parameter referred through the argument’s Parameter property
change, then we need to re-verify the argument. This is aligned
with the manual code in Listing 5, in which we indeed
do access these properties. Note that the manually written
code has an implicit “cache invalidation” criteria: the verify
messages that we calculated for an argument are (potentially)
no longer applicable whenever either the IsMandatory or Type
properties of its Parameter are changed.

By explicitly declaring the dependency in the meta-model
we’re providing valuable information for the model classes
generator. Namely, we now know that there are some model
objects that need to be notified of changes to properties
IsMandatory and Type. In our example, this results in the call
to InvalidateReferers in line 14 of Listing 7. Notice that the
verification dependency is declared in class Argument, but the
code is added to class InputParameter.

Ideally, verification dependencies would be inferred auto-
matically - a very interesting line of research on its own.
In order to make that possible we would need a declarative
way of specifying verification code. In our example, the
code in Listing 5 was written by hand, so there isn’t an
easy way to infer the verification dependencies from this
code. Pragmatically, when developing Service Studio we either
specify the verification dependencies in the meta-model or
explicitly invalidate the objects known to be affected by a
change.

For the base model, namely for types and expressions,
we have automatic verification dependencies. For instance,
properties of type Type are treated as a special case. Whenever
a property of type Type in a particular model object changes,
all expressions referencing the object are invalidated.

The referers structure is persisted together with the model.
For our example in Listing 4 we’ll store the information
presented in Listing 8. In line 3, for instance, we’re storing
the information that the object with id 5 (the input parameter
EmailAddress) is referred by the argument argument with id
10 (the argument in action ProcessRequest).

Notice that the referers structure is needed to solve the
general case of quickly determining the model objects that
may be impacted by a change elsewhere in the model. It is
true that we can easily identify the model objects that are in
a state of error, and so it could be argued that after a change
we would simply re-process those objects. But of course this
doesn’t cover the case of model objects that will be in a state



of error only as consequence of a change. In our example,
if our input parameter was optional the model would be OK.
After making the input parameter mandatory we need to get
an error in the argument.

1 <Referers>
2 <Object id="4" referers="Execute:8" />
3 <Object id="5" referers="Argument:10" />
4 <Object id="8" referers="Start:7" />
5 <Object id="9" referers="Execute:8" />
6 </Referers>

Listing 8. Referers

IV. EVALUATION

A. Time requirements

In order to assess the benefits of our strategy we looked
at a set of application models created with the OutSystems
platform (Table I) and measured the time taken to do a
full consistency check of the complete model (Full verify
time) versus an incremental check (Incremental verify) for a
representative set of model change.

One of the models, Service Center, is a web management
console for the OutSystems Platform. The remaining models
are part of real applications created by OutSystems’ clients
that kindly allowed us to use them for analysis purposes,
provided that we obfuscated the model names. These models
are some of the largest in terms of number of elements, and
were selected precisely because of that characteristic.

The tests were conducted using a Dell laptop with a
2.6GHZ (3.50 GHz max) Intel Core i7-6700HQ CPU, 16GB
of RAM, and an Intel SATA SSD disk drive. For each model
we measured the time taken to do a complete consistency
check and the time taken by an incremental check for several
different kinds of changes. The elements that we changed were
selected among the ones with the highest amount of usages
inside the model, in order to further stress the algorithm - the
time TrueChange™ takes depends primarily on the number of
referers of the element being changed. The kind of element
determined the change operation, as not all operations make
sense for every type of element. For instance, Model #1 has
a high number of user interface screens but low entity count.

Table I summarizes the obtained results. As it can be seen,
the incremental check times are drastically lower than the full
check times. Even in the worst recorded case, TrueChange™
took only 2.4% of the full consistency check time. For our
sample, incremental check took 94ms on average. This value
is aligned with the needs of using the IDE interactively, i.e. it
means that there is low impact on the developer’s experience.

Notice that this sample focused on large models and high
impact changes, and thus is biased towards worst case scenar-
ios. Consequently, it is easy to conclude that in general the
time spent in incremental consistency checks is rather small.

B. Space requirements

We also measure the impact of the referers structure in
storage space. As can be seen in Table II, the impact is far from
negligible, amounting to around one third of the compressed

model size. In this table we present, for each model, its size
on disk and the size of the referers structure.

Even though the impact is high in relative terms, in absolute
terms it is acceptable given the low cost of storage. If addition-
ally we take into consideration the considerable performance
gains, this is a cost that we feel comfortable paying.

V. CONCLUSION

In this paper we presented the TrueChange™ engine and
how it handles with large models. We focused on how
TrueChange™ minimizes the time to do a consistency check
after a model change, which is accomplished by doing in-
cremental checks accelerated by the referers structure. This
structure is a list kept by each element of the other elements
in the model that reference it.

The referers structure allows to back-navigate in the model
very quickly. This is particularly important when propagating
the impact of a model change. The benefits of the referers
structure are not limited to consistency checks, however. We
also use it, for instance, to power the Find Usages operation,
making it extremely fast even for large models.

Using the referers structure has a non-negligible impact
on the size of the model. However, the gains in incremental
consistency check times far outweigh the size increase.

For OutSystems, the major shortcoming of TrueChange™
is the burden placed on the team developing Service Studio.
As shown in section III, developers have to guarantee that
TrueChange™ is aware of all verification dependencies, either
by declaring them in the meta-model or by manually invali-
dating the objects affected by a particular change. Failing to
do so may result in inconsistent models and require a full
consistency check. This is just another instance of the general
(and difficult) problem of cache invalidation.

This shortcoming provides the inspiration for interesting
lines of research that, unfortunately, we haven’t yet had time
to pursue. These could include, among others:

• use a declarative approach to specifying verify checks for
model classes. From these we could generate the verify
code and determine the verification dependencies.

• keep using an imperative approach, but collect verifica-
tion dependencies automatically at runtime. While run-
ning the verify code we could keep track of all properties
that are read. If any of these changes afterwards then the
verify code needs to run again.

Incremental analysis of source code is not a novel idea
and is the subject of active research [6], [7]. The techniques
presented in this paper are in no way restricted to the particular
case of the OutSystems language. We are confident of its
generality and feel that it will be useful to the MODELS
community. We hope that it will be a good starting point for
further discussion during the workshops.

This works has been carried out in an industrial context,
and as such it is lacking in certain areas that are typically
addressed in academic scenarios. Due to many constraints, of
which quick time to market is probably the most important
one, researching and exploring related work needed to be



TABLE I
TRUECHANGE™ TIMES

Model Number of elements Full check time (ms) Incremental check
Change kind Time (ms) % of full check time

Model #1 259759 11468 Add input parameter to screen 70 0.6%
Change input parameter type 148 1.3%

Change input parameter to mandatory 54 0.5%
Model #2 173067 6095 Add attribute to structure 12 0.2%

Change attribute type 144 2.4%
Add input parameter to action 88 1.4%
Change input parameter type 119 2.0%

Change input parameter to mandatory 83 1.4%
Model #3 211588 6728 Add attribute to entity 5 0.1%

Change attribute type 18 0.3%
Model #4 194844 6609 Add attribute to structure 9 0.1%

Change attribute type 9 0.1%
Service Center 278187 26388 Add attribute to entity 215 0.8%

Change attribute type 388 1.5%
Add input parameter to action 91 0.3%
Change input parameter type 77 0.3%

Change input parameter to mandatory 62 0.2%
Average 94 0.8%

TABLE II
SIZE OF THE referers STRUCTURE

Model Compressed model size (MB) Compressed referers size (MB) Referers size / model size
Model #1 12 4.2 35%
Model #2 7.4 2.8 37%
Model #3 8.3 3.0 36%
Model #4 7.3 2.7 37%

Service Center 16.4 4.5 28%
Average 35%

conducted in a limited and time-boxed way. The research that
we did conduct led us to the decision to design and implement
in-house the mechanisms presented in this paper, instead of
using existing approaches. The existing work that we find
didn’t exactly fit our needs or was too hard to integrate into
our product.

REFERENCES

[1] Jim Highsmith and Martin Fowler. The agile manifesto. Software
Development Magazine, 9(8):29–30, 2001.

[2] Henrik Frystyk Nielsen, Roy T. Fielding, and Tim Berners-Lee. Hypertext
Transfer Protocol – HTTP/1.0. RFC 1945, May 1996.

[3] OutSystems. Implement Application Logic. https://success.outsystems.
com/Documentation/11/Developing an Application/Implement
Application Logic/, 2019.

[4] OutSystems. OutSystems 11 Docs. https://success.outsystems.com/
Documentation/11, 2019.

[5] OutSystems. Platform Overview. https://www.outsystems.com/platform/,
2019.

[6] Tamas Szabo, Gábor Bergmann, Sebastian Erdweg, and Markus Voelter.
Incrementalizing lattice-based program analyses in datalog. Proceedings
of the ACM on Programming Languages, 2(OOPSLA):1–29, 2018.

[7] Tamás Szabó, Sebastian Erdweg, and Markus Voelter. Inca: A dsl for
the definition of incremental program analyses. In D. Lo, editor, ASE
2016 Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, pages 320–331, United States, 9 2016.
Association for Computing Machinery (ACM).

https://success.outsystems.com/Documentation/11/Developing_an_Application/Implement_Application_Logic/
https://success.outsystems.com/Documentation/11/Developing_an_Application/Implement_Application_Logic/
https://success.outsystems.com/Documentation/11/Developing_an_Application/Implement_Application_Logic/
https://success.outsystems.com/Documentation/11
https://success.outsystems.com/Documentation/11
https://www.outsystems.com/platform/

	Introduction
	The OutSystems language
	Meta-model
	Model classes
	Models

	TrueChange™ 
	Incremental verification
	Referers

	Evaluation
	Time requirements
	Space requirements

	Conclusion
	References

