
Converting Executable Floating-Point Models to
Executable and Synthesizable Fixed-Point Models

Taylor L. Riché
National Instruments
Austin, TX, USA

taylor.riche@ni.com

Jim Nagle
National Instruments
Austin, TX, USA
jim.nagle@ni.com

Joyce Xu
National Instruments

Shanghai, People’s Republic of China
joyce.xu@ni.com

Don Hubbard
National Instruments
Austin, TX, USA

don.hubbard@ni.com

Abstract—Execution on field programmable gate arrays (FP-
GAs) is now necessary for many areas of algorithm development
and prototyping, whether it be for the performance that a
hardware implementation gives, or the ability to prove an
algorithm works, ”in the real world.”

A problem with FPGAs, however, is that the hardware re-
sources are limited. Most algorithm experts design their algo-
rithms using floating-point math which gives flexible precision.
Floating point is unfortunately expensive to implement in hard-
ware. Therefore, algorithm designers employ experts in fixed-
point math to transform their algorithm to one that will work in
hardware, incurring added cost and time to market.

We present a novel tool as part of the LabVIEW NXG FPGA
Module that uses executable model-driven techniques to guide
an algorithm expert to a fixed-point version of their original
algorithm model. We walk through a case-study for use of our
tool, as well as explain the underlying mathematical and model-
driven formalisms on which we build the tool.

I. INTRODUCTION

Execution on field programmable gate arrays (FPGAs) [1]
is now necessary for many areas of algorithm development
and prototyping, whether it be for the performance that a
hardware implementation gives, or the ability to prove an
algorithm works, ”in the real world.” Unfortunately, FPGAs
are hard to program. Digital design, the art and science
of creating hardware implementations of algorithmic models,
requires a different mode of thinking than traditional modeling
or programming for a general purpose processor. A digital
designer takes into account the clock rate of the hardware
target, manages the validity of data throughout their design,
and even whether or not their code will physically fit on the
FPGA.

The problem of limited hardware resources is important
because most algorithm experts design their algorithms using
floating-point math which gives flexible precision. Floating
point is unfortunately expensive to implement in hardware—
in double-precision floating point (a common implementation
in most programming environments) each operation requires
a full 64 bits and must have logic to deal with special cases
of overflow, underflow, divide by zero, etc..

Often, algorithm designers employ experts in both fixed-
point math as well as digital design to transform their algo-
rithm to one that will work in hardware, incurring the added
cost and time to market. Ideally, an algorithm designer could
use a tool to design their algorithm model that also abstracts

away the complexity of transforming their algorithm to execute
in hardware.

We present a novel tool as part of the LabVIEW NXG
FPGA Module [2] that uses executable model-driven tech-
niques to guide an algorithm expert to a fixed-point, FPGA-
executable version of their original algorithm model. The tool
works on executable models built in G, the main graphical,
dataflow model of computation in LabVIEW NXG.

While there is a large body of work on automatically moving
floating-point models to fixed-point models (see Section V),
our work is novel in that it takes a practical, profiling-based
approach to the problem. Instead of trying to create the
“perfect” solution automatically through analysis of just the
algorithm, we use the user’s own testbench data to generate
an initial suggestion of fixed-point types that work within the
constraints they give us. From there, we provide tools that help
the user find hot spots of imprecision in the code, and then
conveniently make changes too add precision where necessary.
The novelty in our contribution is realizing that the simplistic
approach of guiding the user toward a quality implementation
is more effective in many cases than a fully automatic one.

Because our models are executable, we guide the user
to create a transformed model that is correct-enough by
construction. The user is willing to accept some deviation from
correctness (i.e. arithmetic imprecision) to obtain a version of
their model that fits on an FPGA. While this concept is unusual
in the modeling community, it is a key ingredient in solving
the float-to-fixed problem for a user. The user provides us
with their error, or correct-enough constraint, and we derive
transformations using that constraint from the beginning.

In Section II we dive into more detail about why the trans-
forming of floating-point algorithms to fixed-point versions is
difficult for algorithm designers. In Section III, we present
the mathematical and modeling formalisms that underlie Lab-
VIEW NXG’s fixed-point transition tool. Section IV steps
through the user’s workflow as they move from floating point
to fixed point. Finally, we discuss related work and wrap up
in Sections V and VI.

II. PROBLEM DESCRIPTION

A. Challenges of Digital Design

Today, communication and signal processing algorithm
designers are increasingly being asked to show that their

algorithms work on more than just a white board or in a
simulation. Funding agencies and standard boards want to see
the algorithm work in, “the real world,” and this often means in
hardware. For most people, this means making their algorithm
work on a field-programmable gate array (FPGA).

FPGAs are much harder to program than a general purpose
CPU as the programmer must take into account hardware-
centric details such as clock timing and data validity. Also,
a design that works perfectly fine in a standard software
platform may not even be able to be compiled into hard-
ware due to the fact that only certain parts of hardware
design languages (e.g. VHDL [3] or Verilog [4]) are what
is referred to as synthesizable. Synthesizable means that a
compiler is able to take all the structures in the program
and turn these into hardware constructs such as flip-flops
and look-up tables.Needless to say, expertise is required to
design efficient FPGA implementations. Many people new
to hardware-design-language programming create code that
simulates correctly but would never synthesize into hardware.
An example of this is transferring data through variables in
a way that creates a latch in hardware—this latch will not
synthesize on an FPGA.

However, an expert in communication algorithm design (say
somebody working on an encoder for the new 5G wireless
standard [5]) rarely is an expert in digital design (the art
and practice of creating FPGA implementations) or fixed-point
arithmetic. They often have to hire experts in digital design
and fixed point to take their golden models to a hardware
implementation. We refer to the starting model as “golden” to
signify that it represents the most correct version of the model.
Algorithm designers do not want to alter the golden model
once it is created—this is their reference. So they make a copy
to send to the experts in digital design and fixed point, and then
iterate back and forth to make sure that these translated models
still meet the requirements. The process is time consuming and
expensive.

There are many challenges in creating efficient hardware
implementations, many of which we mention above, but this
paper focuses on one: the need to remove floating-point
arithmetic from the golden model.

B. Challenges of Fixed-Point Arithmetic

Algorithm designers use floating-point math [6] to design
the golden models of their algorithms. Floating-point arith-
metic allows for arbitrary precision. Unfortunately, floating-
point operations are still relatively expensive to implement on
FPGAs. In a double-precision floating point implementation,
each operation requires a full 64 bits and must have logic to
deal with special cases of overflow, underflow, divide by zero,
etc.

To save resources, digital designers use fixed-point arith-
metic (FXP) [7]. In fixed-point arithmetic, a designer can
set the number of bits that represent the integer part of a
number and set the number of bits that represent the fractional
part of the number. When a computer applies a mathematical
operation to a number or numbers (such as add or multiply), a

Fig. 1. Three multiplies with different floating-point and fixed-point type
output

computer system will either keep the representation the same
(and thus lose precision) or grow the number of bits. Often,
even growing to keep the full precision of the resultant number
is less expensive than floating point. However, often the bits
must be constrained to represent a number that is less precise
than what the operation would dictate to keep the design from
getting too expensive.

Figure 1 shows a basic arithmetic operation of multiply
represented in our graphical, dataflow model. The top row
shows the multiply using floating-point arithmetic. The middle
line we change the inputs to fixed-point types, specifically
types that have 1 integer bit and 15 fractional bits. In this
example, the type grows to 2 integer bits and 30 fractional
bits (we describe some of the rules of bit growth in the
fixed-point arithmetic in Section III). This new type is the
amount of bits required to deal with any growth of the
number (increasing the integer bits) and any required increase
in precision (growth in the fractional bits) that comes from
multiplying the numbers together. In our environment, we
default to fixed-point mathematical operations growing so that
they do not lose any data that the user may have. If the user
chooses to overwrite this growth by restricting the output type
(the third multiply in Figure 1), we designate this restriction
with the blue dot at the output of the operator.

The main challenge with using fixed-point arithmetic is
selecting which fixed-point types to use. In other words, how
many bits are appropriate for each operation. Generally, this
process of transforming a floating-point golden model of an
algorithm to a fixed-point model of the algorithm is done
manually. The original algorithm expert often has to hire an
expert in fixed-point arithmetic to transform the model of their
algorithm to fixed-point. This extra person adds cost and time
to the product or research project.

Figure 2 shows an abstract representation of the fixed-
point transformation process. The algorithm designer creates
Mgolden in their preferred high-level, mathematical modeling
tool.

Then, the fixed point expert uses a variety of techniques and
tools (spreadsheets, MATLAB [8], Simulink [9], etc.) to create

Fig. 2. Standard transformation of the golden model to an FXP version.

T = TFXP1...TFXPn. The fixed-point expert applies these
transformations to Mgolden until they reach MFXP , which
is defined as the fixed-point model that meets the precision
constraints of the algorithm designer, but also works for the
particular FPGA on which the designer wants to run their
algorithm1.

The transforms in the sequence T are often all applied man-
ually by the fixed-point expert. They derive these transforms
through analyzing the algorithm, often using spreadsheets, and
much trial and error, which is expensive.

The series of transforms T are not correct by construction in
the strictest sense. The algorithm expert agrees upon bounds
of correctness, and as long as the transformations stay with
those bounds, we say that the algorithm is correct enough by
construction.

C. Finding a Correct-Enough Solution

The transformation of the golden, floating point model
Mgolden to the FPGA-ready fixed-point model, MFXP , is
an exercise in balancing two constraints: FPGA resources
and algorithm correctness. As we introduce more error into
the algorithm, it generally uses less resources. For many of
the applications that our users are concerned with, error is
measured in decibels of signal-to-noise ratio, or SNR. SNR is
a comparison of the amount of good data (i.e. signal) to the
interference, or noise.

Fig. 3. Approximate Pareto front of error vs. resources for a real algorithmic
model in our environment

1A separate set of transforms is necessary to take a high-level model in
fixed point to an implementation that can actually synthesize on FPGA. While
our tool does make this process easier than many traditional approaches, that
benefit, and the techniques that went in to the design of our FPGA compiler,
are beyond the scope of this paper.

Fig. 4. Pareto front of error vs. resources and the acceptable region for final
FPGA implementations

Figure 3 shows the approximate Pareto front of a manual
exploration of different fixed-point types and the FPGA re-
sources used for a basic IIR filter algorithm. On the x-axis we
increase the SNR we can tolerate in our algorithm. We then
create an FPGA implementation of the design using the fixed
point types that our tool suggests. On the y-axis, we record
the percentage of one type of the FPGA resources (flip-flops)
that the implementation of the design uses.

Figure 4 shows a stylized Pareto front similar to the experi-
mentally gathered one in Figure 3. The vertical and horizontal
lines represent the user’s limits on how many FPGA resources
they can use with their algorithm implementation and the error
they are willing to accept in that implementation, respectively.
The shaded region in Figure 4 represents the space of solutions
on that meet the requirements. The points of the curve in this
region are the solutions achievable with the tool that created
the point. MFXP is one of these points, and the challenge is
transforming original Mgolden to a point on the Pareto front
for that algorithm that lies within the acceptable region.

III. THE LABVIEW NXG SOLUTION

A. Basic Description

In the LabVIEW NXG FPGA module, we provide a tool
that creates TFXP1 for the algorithm designer automatically.
We can do this because our models are executable during the
entire transformation process2. We then guide the algorithm
developer along the process of coming up with and applying
the transformations TFXP2...TFXPn.

Our solution is based on profiling the numeric outputs of
each operation in Mgolden. The designer gives us an error
constraint in terms of signal-to-noise ratio (SNR) and provides
test data that they consider representative of the environment
to which the algorithm will be deployed in hardware. The user
provides the test data as an executable testbench model.

Not all executions are profiled. We allow the user to
determine when and if they want a model to be profiled.
This user-facing option allows us to take advantage of our
executable models when we need to gather data, but not incur
a constant overhead during all executions.

2We provide a cycle-accurate FPGA simulator, as well as instant feedback
for whether code is synthesizable.

As we execute each mathematical operation in the profiled
algorithm, we record the corresponding output values for these
operations. After all the test data have been executed we
analyze the resulting profiled data to determine a number of
integer bits and fractional bits that can represent all the output
values within the given error constraint.

B. Transform Composition

The set of transforms T is composed of a series of trans-
forms TFXP1 . . . TFXPn. Each one of these transforms may
do more than one thing to the model being transformed. Given
a model with k operations that can affect the precision of the
overall result, we say that TFXPi = {t1, t2, . . . tk}.

For a tj ∈ TFXPi, this transform may either change the
output type of the operation, or do nothing, which we signify
with ∅. If a transform does change the type, we represent
that differently. Some examples of transforms that change the
type are, along with their representations, [DBL → (3.5)]
(taking a floating-point output type to the fixed-point output
type with three integer bits and five fractional bits) or [(3.5)→
(3.8)] (adding three fractional bits to increase precision of this
particular operator).

Our generated TFXP1 has a transform for each operation
in the model. Our analysis produces a ti for each operation i,
as each operation will produce a set of output values when we
run the testbench. In Figure 1, if that multiply was the only
operation in our golden model, TFXP1 would just have one
component. If going from the top floating-point version to the
bottom version represented our initial conversion, we would
say that TFXP1 = {[DBL→ (1.15)]}.

C. Mathematics of Creating TFXP1

As previously mentioned, we record the output values for
each operator in our model during profiling. To determine
TFXP1, we first start with the constraint that the user gives
us in SNR.

For each operator i in our model, we have a vector of
outputs ~Oi of size n, where n is the number of times the
operator ran when we profiled Mgolden using the testbench.
For each value oj ∈ ~Oi, we determine the amount of bits
necessary to capture the integer part with no overflow 3. We
refer to this number of integer bits as IntMax.

To determine the fractional part of the type suggestion
we first have to determine the SNR of each possible type
choice. This set of choices is bounded as we are starting
with double-precision floating point, which uses at most 64
bits to represent the fractional bits. To determine SNR we
first calculate the vector that is the golden values converted
to a particular fixed-point type. If we are currently evaluating
t = [DBL→ (I.F)], where I is a number of integer bits and
F is a number of fractional bits, we represent the converted
vector as FXP(I.F)(~Oi). We then calculate the vector norm
of the golden values minus the golden values converted to the
particular fixed point type which gives us the noise:

3Overflow is defined as when the integer part of the number needs more
bits than we are using to represent the integer part.

‖ ~Oi − FXPI.F (~Oi)‖

Where the vector norm is defined as:√√√√ n∑
j=1

(oj − FXPI.F (oj))2

We then calculate the vector norm of the golden outputs Oi

themselves, giving us the signal:

‖ ~Oi‖ =

√√√√ n∑
j=1

o2j

Finally, we calculate the SNR in decibels:

SNRi = log10

(
‖ ~Oi‖

‖ ~Oi − FXPI.F (~Oi)‖

)
Given these procedures to calculate the SNR, we can find

our suggested fixed-point type. We start with the number of
fractional bits required by the most precise of the output
values. We then step down one bit at a time, calculating the
SNR for each type choice. Once we hit an SNR that is below
the constraint, we add 1 bit to the number of fractional bits,
thus guaranteeing that the SNR this type will produce is above
the constraint. We refer to this number of fractional bits as
FracMin.

Then, for each operator i, we can create a transform
suggestion ti = [DBL → (IntMax.FracMin)]. We create
these type suggestions ti that make up TFXP1 based on the
SNRs that we calculate, but note that these SNRs are local.
They are based purely on the SNR we obtain by applying the
transform to the profiled values—they do not take into account
the error that propagates through the model during execution.

D. Error Propagation and TFXP2 . . . TFXPn

Fig. 5. Bit-width growth to preserve precision.

Figure 5 shows a simple algorithmic model of two multi-
plies and an add. While these are all fixed-point operations,
the settings on the operators are such that the output type
will grow according to the rules of fixed-point arithmetic
such that no error or overflow are introduced. For multi-
plies, the number of fractional bits in the product, FProd,
is defined by FProd = FInput1 + FInput2. The number of
integer bits in the product, IProd, is defined by IProd =
IInput1 + IInput2. The add operation introduces less error,
so the number of integer bits required, ISum, is defined as
ISum = max(IInput1, IInput2) + 1. The fractional bits re-
quired, FSum, is defined as FSum = max(FInput1, FInput2).

In this version of the model, no error is introduced, but that
clearly comes with a cost. In LabVIEW NXG, for example,
we do not allow fixed-point types that use greater than a total
of 64 bits between the integer and fractional part. It is obvious
to see that with just a few multiplies one will not be able to
have a set of fixed-point types for the operators in their model
that would introduce no error.

Fig. 6. Here, we restrict the output type at each operator.

Figure 6 shows a version of the model where we overwrite
the output of each operator to be a fixed-point type with 1
integer bit and 15 fractional bits. As data moves from left
to write, the amount of error introduced is compounded. A
simplistic way to see this point is noticing the difference
in the number of fractional bits on the output of a given
operator in Figure5 versus the number of fractional bits for that
corresponding operator in Figure 6. The difference increases
dramatically. However, this introduction of error may very well
be acceptable to the user as long as the overall error is below
their threshold (i.e. an SNR above the constraint they give us),
making the final design correct enough by construction.

Given that the models Mgolden and MFXP1 . . .MFXPn are
executable, we can continue to execute the fixed-point models
during the conversion process. Each time the user executes one
of the fixed-point models, we again collect a vector of output
values at each operator i : ~Oi. From this point on, we refer to
the golden vector of values for each operator i as ~Ogolden

i .
On these later executions, we are able to calculate not a

local SNR but a true SNR that takes into account the error
propagation. To calculate the true SNR, we always compare
the profiled data to the original golden data from the floating
point run. So the SNR for a given operator j is defined as:

SNRi = log10

(
‖ ~Ogolden

i ‖
‖ ~Ogolden

i − ~Oi‖

)
Performing the transformations TFXP2 . . . TFXPn may

change the behavior of the program, other than just introducing
imprecision. For example, a particular branching instruction
may branch separately due to a compare having a different
value. We may end up getting only m profiled values at an
operator that previously had n profiled values in Mgolden. We
take a simple approach of truncating the longer vector. We
find that this generally produces either an acceptable SNR,
or it introduces enough error that it becomes a hot spot of
imprecision, and thus noticeable to the user.

As the user continues to run the testbench to get the
real SNR values that take error propagation into account,
their testbench should pass or fail their design requirements.
It is this constant feedback from their testbench, plus the
information that our tool gives them, that allows them to

continue to move in the correct direction along the Pareto
front of possible fixed-point type choices.

IV. FIXED POINT CONVERSION WORKFLOW

A user starts with the golden model of their algorithm,
written in some high-level tool. For purposes of explaining the
workflow in our LabVIEW NXG, we are showing a golden
model written in G, one of the dataflow models of computation
present in LabVIEW NXG. Figure 7 shows the golden model
of a simple IIR Filter written in G.

The user creates a testbench in G that runs appropriate
test data through the golden model. The user would normally
create a testbench such that it is easy to determine whether
the execution of the golden model is within the acceptable
correctness bounds. It is a reasonable assumption that an
algorithm expert would be familiar with what a thorough
testbench would be. They know their algorithm and domain,
and often the requirements of the algorithm are set forth by
the customer or funding agency.

We provide a simple mechanism for the user to duplicate
their golden model in its entirety. Once the user duplicates
the model, the duplicate can be integrated into the testbench
such that the output from both models, golden and duplicate,
can be compared as the user moves from Mgolden to MFXP .
Once they have their duplicate of the golden model, they can
start to profile Mgolden.

The user tells LabVIEW NXG that they want to profile
the execution of the duplicate of their golden model. This
command forces LabVIEW NXG to record all the data that
flows through the inputs and outputs of every operation in their
model. Because our models are executable, there is no extra
code that the user has to write to achieve this profiling. The
user then runs the testbench with the profiling enabled, and
the tool analyzes the profile data to determine the transform
TFXP1 using the methods we explain in Section III. The
tool displays these suggestions in a table at the bottom of
the environment. The set of suggestions for the Mgolden from
Figure 7 is shown in Figure 8.

Each row represents a different operation in the golden
model. The name of the operations are in the second column.
In the third column the tool lists the current type as well as the
initial FXP suggestion. The fourth column is the local SNR
at each operation if the user chooses to use the suggested
FXP type. The fourth and fifth columns show the Overflow
and Underflow 4, respectively, that those type choices would
cause at that corresponding operation.

At the top of the table there is a field for the target SNR.
The user can change this value (it defaults to 10), and see the
suggested types change. As they increase the SNR, generally
the amount of bits increases. Similarly, as they reduce the
SNR the amount of bits will reduce. The user can pick another
strategy, bit-width, that will make all the suggestions the same
total width, and attempt to change the integer and fractional

4Underflow is the percentage of samples that are a number smaller than the
smallest number that the suggested amount of fractional bits can represent.

Fig. 7. A golden model of an algorithm written in LabVIEW Communication Systems Design Suite.

Fig. 8. A suggestion of TFXP1 that we provide that makes local recommendations within the given error constraint.

parts to maximize SNR within that bit-width. This box is
where the user provides their constraints—the user constraint
defines the acceptable error that we attempt to match.

The user would then select some number, or all, of the
suggestions, and the hit the Apply button in the table. Figure 9
shows the model MFXP1 after the user has applied TFXP1

by selecting all the rows and hitting apply. Notice that the
model is now annotated with the specific FXP types that each
operation will output.

The suggestions that the tool gave the user were optimizing
local error. However, error does propagate through the model,
increasing as we limit the amount of growth in the type.
To understand the actual, propagated error, the user must
run their testbench again. We provide a warning to let them
know that their SNR values are out-of-date. Once the user
runs the testbench again, we then provide the actual error in
the SNR column for each operation taking into account error
propagation through the design. Figure 10 shows the table with
actual, propagated error.

While we determined a starting point for the floating point
to fixed point transformation, TFXP1, we shift at this point in
the workflow to guiding the user to determine the appropriate

TFXP2 . . . TFXPn. One of the tools we give is to show “hot
spots” of low SNR on the model itself, as seen in Figure 11.
The user has requested an SNR of 10, but after a run we show
that somewhere in the lower part of the model is introducing
a large amount of error causing this lower path to have a low
SNR. The first step to rectify this situation is to introduce extra
fractional bits to allow for more precision in this path.

We give the users a tool to do that, as seen in Figure 12. This
tool allows the user to select multiple nodes in their model, and
add a relative number of bits to either the fractional or integer
components of the output types of the selected operations.
This tool allows the user to quickly increase precision along
an entire hot spot in the application.

The user then reruns their testbench to see how the error
has changed. They repeat this process until they are happy
with the error they are seeing and the results they are getting
in their testbench, creating a model that is ”correct enough.”

V. RELATED WORK

LabVIEW [10] is a commercial, graphical dataflow pro-
gramming environment. It allows engineers and scientists to
program in a model of computation that closely matches the

Fig. 9. The executable model MFXP1 after the user applies our suggestion for TFXP1.

Fig. 10. The error of each operation after applying the initial suggestions, TFXP1, and rerunning the test bench.

Fig. 11. Nodes in the model that have low SNR pointing the user to a possible
hot spot of precision loss.

models of how they think and design. It provides an executable
model, G, so that the graphical diagrams are runnable at all
points of development.

LabVIEW NXG [11] is a new version of LabVIEW with a
modern editor, improved design, and many usability improve-
ments. The LabVIEW NXG FPGA [2] module provides the
support to write executable models for FPGAs. The LabVIEW
NXG FPGA module is what contains our float-to-fixed tool.

There are many other graphical programming environments:
Simulink [9], Ptolemy [12], GNU Radio [13], and Blender [14]
are some of the more widely known from both academia and
industry, but there are many more. G is specifically targeted
at engineers and scientists, and we craft the metamodel and
available primitives with these applications in mind.

Dataflow programming has a long history [15]. When
National Instruments released LabVIEW in 1987, one of
the main innovations to visual and dataflow programming

Fig. 12. The dialog for our multinode type transform.

was the notion of including program control structures. This
decision mixed concepts from traditional, imperative text-
based programming with dataflow. LabVIEW also supports
object-oriented programming with LabVIEW Classes.

The concept of executable models is not new, as Simulink,

Ptolemy, and Executable UML [16] (among others) have all
been around for a while. Ciccozzi et. al provide a survey of the
current research in executable UML [17]. Executable models
is an active area of research, too large to properly survey
here. Nothing that LabVIEW provides in terms of execution
is particularly novel from a modeling perspective. However, it
was utilizing the executable nature of our models that allows
us to quickly and easily use actual test data to determine the
initial transformation and then guide users through applying
the rest of the fixed-point transformations.

Riché et. al discussed using MDE-techniques to apply
expert-knowledge transforms to dataflow applications [18].
They then expanded this work to transforming series of
transformations, i.e. pushouts, on dataflow applications [19].
The work was continued by Gonçalves et. al in the creation
of the ReFlo tool [20].

Oh et. al’s work on pareto front optimizations in product
lines [21] is a much more thorough look at pareto front
optimizations than we present in this work. They use random
jumps to make sure that the optimizations do not get stuck
in local minima. The future work planned for our tool would
build on similar concepts as in Oh et. al’s paper.

Floating-point to fixed-point conversion is an active area
of research [22]–[25]. However, most work focuses on total
automatic conversion of the model. These tools use a variety of
techniques in their effort to completely convert the algorithm
to fixed point. The novelty in our approach is using simple
techniques to get a user started on their conversion to fixed
point, and then give them tools that guide them along the rest
of the way. By using this approach, we allow for a greater
range of algorithmic models to be converted than the fully
automatic tools. But obviously, we do still depend on the
algorithm experts to create quality testbenches that accurately
test the overall correctness of their algorithmic model. We
also are not claiming our contribution is that our underlying
conversion mathematics are new–we feel that we are simply
presenting these ideas in an easy-to-use way.

VI. CONCLUSION

We present a novel tool as part of LabVIEW NXG FPGA
Module that uses model-driven techniques to guide an algo-
rithm expert to a fixed-point, FPGA-executable version of their
original algorithm model. The tool works on executable mod-
els built in G, the graphical dataflow model of computation in
LabVIEW NXG. Our tool helps ease the pain of transforming
floating-point, golden algorithm models to fixed point.

Part of the novelty in our solution is we use simple
techniques to generate an initial floating-point to fixed-point
transform. Our executable models enable this simplicity. We
then guide the user along the rest of the way with information
about the key sources of error within their model. Tools within
our environment make updating types easy.

Our focus is to get people moving in the right direction, not
necessarily taking an “automatic transformation or nothing”
approach. This guided approach widens the set of algorithms
that our tool can help algorithm experts convert.

REFERENCES

[1] S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic, Field-
Programmable Gate Arrays, ser. The Springer International Series in
Engineering and Computer Science. Springer US, 1992, vol. 180.

[2] N. Instruments, “Labview nxg fpga module,” http://www.
ni.com/en-us/support/downloads/software-products/download.
labview-nxg-fpga-module.html#305496, 2018.

[3] “Ieee standard vhdl language reference manual,” IEEE Std 1076-2008
(Revision of IEEE Std 1076-2002), pp. c1–626, Jan 2009.

[4] “Ieee standard for verilog hardware description language,” IEEE Std
1364-2005 (Revision of IEEE Std 1364-2001), pp. 1–560, 2006.

[5] 3GPP, “Submission of initial 5g description for imt-2020,” http://www.
3gpp.org/NEWS-EVENTS/3GPP-NEWS/1937-5G DESCRIPTION,
Jan 2018.

[6] “Ieee standard for floating-point arithmetic,” IEEE Std 754-2008, pp.
1–70, Aug 2008.

[7] B. Widrow, “Statistical analysis of amplitude-quantized sampled-data
systems,” Transactions of the American Institute of Electrical Engineers,
Part II: Applications and Industry, vol. 79, no. 6, pp. 555–568, Jan 1961.

[8] T. M. Inc., “Matlab,” https://www.mathworks.com/products/matlab.html,
2018.

[9] ——, “Simulink,” https://www.mathworks.com/products/simulink.html,
2018.

[10] N. I. Corporation, “Labview,” http://ni.com/labview, 2018.
[11] N. Instruments, “Labview nxg,” https://www.ni.com/en-us/shop/labview/

labview-nxg.html, 2017.
[12] System Design, Modeling, and Simulation using Ptolemy II.

Ptolemy.org, 2014. [Online]. Available: http://ptolemy.org/books/
Systems

[13] “Gnu radio,” https://gnuradio.org/, 2018.
[14] “Blender,” https://www.blender.org/, 2018.
[15] W. M. Johnston, J. R. P. Hanna, and R. J. Millar, “Advances in dataflow

programming languages,” ACM Computing Surveys, vol. 36, no. 1, pp.
1–34, March 2004.

[16] S. J. Mellor and M. J. Balcer, Executable UML: A Foundation for Model-
Driven Architecture. Addison-Wesley Professional, 2002.

[17] F. Ciccozzi, I. Malavolta, and B. Selic, “Execution of uml models:
a systematic review of research and practice,” Software & Systems
Modeling, Apr 2018. [Online]. Available: https://doi.org/10.1007/
s10270-018-0675-4

[18] T. L. Riché, H. M. Vin, and D. Batory, “Transformation-based paral-
lelization of request-processing applications,” in Proceedings of the 13th
International Conference on Model-Driven Engineering, Languages, and
Systems (MODELS), ser. LNCS. Springer, 2010, pp. 2–16.

[19] T. L. Riché, R. Gonçalves, B. Marker, and D. Batory, “Pushouts in
software architecture design,” in Proceedings of the 11th International
Conference on Generative Programming and Component Engineering,
ser. GPCE ’12. New York, NY, USA: ACM, 2012, pp. 84–92.
[Online]. Available: http://doi.acm.org/10.1145/2371401.2371415

[20] R. C. Gonçalves, D. Batory, J. L. Sobral, and T. L. Riché, “From
software extensions to product lines of dataflow programs,” Software
& Systems Modeling, vol. 16, no. 4, pp. 929–947, Oct 2017. [Online].
Available: https://doi.org/10.1007/s10270-015-0495-8

[21] J. Oh, D. Batory, M. Myers, and N. Siegmund, “Finding near-optimal
configurations in product lines by random sampling,” in Proceedings of
the 2017 11th Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE 2017. New York, NY, USA: ACM, 2017, pp. 61–71.
[Online]. Available: http://doi.acm.org/10.1145/3106237.3106273

[22] S. Lee and A. Gerstlauer, “Fine grain precision scaling for datapath
approximations in digital signal processing systems,” in VLSI-SoC: At
the Crossroads of Emerging Trends. Cham: Springer International
Publishing, 2015, pp. 119–143.

[23] A. Pedram, R. A. van de Geijn, and A. Gerstlauer, “Codesign tradeoffs
for high-performance, low-power linear algebra architectures,” IEEE
Transactions on Computers, vol. 61, no. 12, pp. 1724–1736, Dec 2012.

[24] P. Belanovic and M. Rupp, “Automated floating-point to fixed-point
conversion with the fixify environment,” in 16th IEEE International
Workshop on Rapid System Prototyping (RSP’05), June 2005, pp. 172–
178.

[25] L. S. Rosa, C. F. M. Toledo, and V. Bonato, “Accelerating floating-
point to fixed-point data type conversion with evolutionary algorithms,”
Electronics Letters, vol. 51, no. 3, pp. 244–246, 2015.

