
Firmware Synthesis for Ultra-Thin IoT Devices
Based on Model Integration

Arthur Kühlwein
FZI Research Center for Information Technology

Karlsruhe, Germany
kuehlwein@fzi.de

Anton Paule
FZI Research Center for Information Technology

Karlsruhe, Germany
paule@fzi.de

Leon Hielscher
FZI Research Center for Information Technology

Karlsruhe, Germany
hielscher@fzi.de

Wolfgang Rosenstiel
University of Tübingen

Tübingen, Germany
rosenstiel@informatik.uni-tuebingen.de

Oliver Bringmann
University of Tübingen

Tübingen, Germany
oliver.bringmann@uni-tuebingen.de

Abstract—Developing firmware for ultra-thin Internet of
Things (IoT) devices is challenging due to exceedingly limited
hardware resources, increasing functional requirements, and
rigorous time-to-market constraints prevalent in industry. Model-
driven approaches are often used to tackle these challenges.
In the IoT and embedded systems domains, highly specialized
metamodels are employed in systems engineering, including the
development of firmware. However, these metamodels exist in
isolation, limiting the capabilities of model-driven activities. In
this paper, we show how firmware synthesis for ultra-thin IoT
devices can be enhanced by model integration which is realized
by a novel unifying modeling language that aims at integrating
the large number of dedicated metamodels. We demonstrate our
approach with an industrial use case where we synthesize parts
of the firmware for one of the sensor peripherals of an IoT device
along with contracts enabling static code verification.

Index Terms—Internet of Things, Model-Driven Engineering,
Code Generation, Software Verification

I. INTRODUCTION

The Internet of Things (IoT) is on the rise and expected
to grow dramatically over the next decade [1]. Ultra-thin IoT
devices with sensors and actuators need to be smart and cheap,
while consuming only minimal amounts of energy. Such
resource-constrained IoT devices pose a serious challenge for
the development of firmware, i.e. low-level software closely
interacting with the hardware that is deployed on these types
of devices. On the one hand, firmware for IoT devices must be
ultra-thin with an extremely small memory footprint and ultra-
low energy demands. On the other hand, IoT devices contain
extensive software functionalities, such as real-time computing
capabilities, connectivity, security, safety, and remote update
mechanisms. A typical industrial environment puts additional
pressure on firmware developers through rigorous time-to-
market constraints. Model-driven approaches are a promising
way of tackling the challenges at hand, as they have been
used successfully in a number of different domains, such as
telecommunications [2], health [3], and web engineering [4].

This work has been partially supported by the German Federal Ministry of
Education and Research (BMBF) in the ITEA3 project COMPACT under grant
01—S17028C. The authors are responsible for the content of this publication.

MM
1

MM
1

MM
2

MM
3

IoT-PML

MM
2

MM
3

Transformations, Analyses,
Optimizations, ...

Transformations, Analyses,
Optimizations, ...

Metamodels

S
ta

te
 o

f
P

ra
ct

ic
e

X X

E
n

vi
si

o
n

ed

Fig. 1: The current state of practice and our vision with the
IoT-PML.

In the domain of embedded systems and IoT, a number of
dedicated, highly specialized metamodels are used for different
purposes along the IoT value chain (see Section II-A).

In the current state of practice, the metamodels exist in
isolation, as depicted in the top half of Fig. 1. Due to this
separation, the metamodels cannot be easily integrated, leading
to a variety of issues. It limits the capabilities of model-driven
activities to the expressiveness of the metamodel they are
working on. In particular, the automation of firmware develop-
ment is difficult because no common interface exists between
the different metamodels [5]. Furthermore, it hinders co-design
and coordination [6], which is of particular relevancy since
hardware/software co-design is a common practice in this
domain. Design errors may be detected late in the development
cycle or even worse, when the product is already in operation.
Such errors can result in significant financial repercussions [7].
In the worst case, an error can potentially lead to catastrophic
system failures, as IoT devices are typically embedded in a
safety-critical context [8].

One way to tackle these issues is a modeling language
that is able to tie together these multifaceted metamodels,
as shown in the bottom half of Fig. 1. Such a language
increases the power of model-based activities by exploiting
data synergies, that is, complementary relationships between

the data provided by the metamodels. We envision model-
based tools to use models of this language as their primary
source of information, which enables a holistic approach to the
automated synthesis of firmware for resource-constrained IoT
devices by creating a common shared interface between the
different metamodels. In this paper, we make two contributions
in this direction. We first introduce a unifying, interoperable
IoT Platform Modeling Language (IoT-PML), which captures
the entire modeling worfklow at various levels of detail and
links together the various metamodels. We then demonstrate
how the IoT-PML can enhance synthesis of firmware annotated
with contracts for static code verification for one of the sensor
peripherals of an ultra-thin IoT device.

The remainder of this paper is structured as follows. Section
II explains the technical background related to our contribu-
tions. Section III describes the IoT-PML. Section IV illustrates
how the IoT-PML can enhance firmware synthesis in top-
down use case. Section V describes related work. Section VI
concludes this paper and provides an outlook on future work.

II. BACKGROUND

A. Metamodels for IoT Firmware Development

Firmware running on IoT devices is embedded software.
Thus, the collection of metamodels that are related to the IoT
and embedded software domains is comprehensive, ranging
from metamodels of general-purpose modeling languages to
metamodels of highly specialized, dedicated domain-specific
modeling languages (DSMLs). In addition, a large number of
metamodels have been proposed by research, addressing issues
such as IoT node connectivity and configuration [9], [10],
security [11], service discovery [12], and runtime adaptability
[13]. It is worth noting that these metamodels typically focus
on the device network and have limited expressiveness in terms
of modeling individual devices. As enumerating all relevant
metamodels here would go beyond the scope of this paper,
we will only present a limited selection of hardware- and
software-centric metamodels most relevant for our work.

1) IP-XACT: IEEE 1685-2014 (IP-XACT) [14] is a stan-
dard for the detailed specification of intellectual property (IP).
It defines an XML format for IP structure, configuration, and
tool flow, enabling reuse and integration between different IP
vendors. The IP-XACT metamodel is represented by an XML
schema definition (XSD). An IP-XACT description of an IP
is a vendor-independent electronic datasheet describing the IP
interface, hardware registers, and related file sets required for
IP integration. The standard provides only very limited support
for the inclusion of software aspects.

2) UML and UML Profiles: The Object Management
Group (OMG) has standardized a number of graphical model-
ing languages. The most prominent representative is arguably
the Unified Modeling Language (UML) [15], which can be
extended for domain-specific applications via its profile mech-
anism. In the embedded software domain, there exist profiles
such as the OMG Systems Modeling Language (SysML) [16]
or the OMG Profile for Modeling and Analysis of Real-Time
and Embedded Systems (MARTE) [17]. The metamodels of

these languages all conform to the OMG Meta Object Facility
(MOF) [18]. Constraints in MOF-conformant models can be
expressed using the Object Constraint Language (OCL) [19].

B. Software Verification

IoT devices deployed in a safety-critical context have strin-
gent requirements on quality and reliability with zero tolerance
for failure, which entails tremendous design efforts that need to
be spend on rigorous verification [20]. In particular, firmware
can crash the entire system due to a faulty device configuration
or critical runtime errors.

Static analyses can address the set of problems arising in
software verification by proving the abscence of runtime errors
such as out-of-bounds array accesses or integer overflows.
Furthermore, they can show that critical program states which
can result in a system malfunction or crash can never be
reached. From the wide range of static analysis approaches
[21] and associated tools that are available, we adopt the
methodology of Verified Concurrent C (VCC) [22], which we
utilize for our use case in Section IV. VCC is an industrial-
strength verification environment for low-level C code that is
geared towards modular and sound verification of functional
properties using contracts and invariants on states.

Function contracts specify the properties of a function
using three types of clauses. Pre-conditions, introduced by
the requires clause, state the assumptions that must hold
before calling the function. Post-conditions, introduced by the
ensures clause, define the guarantees a function makes after it
returns to the caller. In addition the writes clause specifies the
way a function accesses areas in memory, i.e. it states explicit
permissions to modify program state.

Object invariants can be considered as contracts on data.
While function contracts specify state consistency on entry
to or exit from the function, object invariants associate such
consistency with the data itself. In VCC, object invariants are
predicates expressed in first order logic on data and can be
associated with compound C types (structs and unions).

Ghost code provides additional means of specification for
functional properties in VCC. Ghost code is seen only by
the static verifier, not the regular compiler and is mainly
used to introduce abstractions and states one can reason about
more efficently afterwards. Ghost code and operational code
is strictly separated and thus any flow of data from ghost state
to operational state of the software is forbidden.

III. LANGUAGE DESCRIPTION

The IoT-PML captures essential concepts used within
the embedded sytems domains, including functional require-
ments concerning the software and hardware platform, non-
functional requirements such as power consumption, as well
as device configurability and usage scenarios. The IoT-PML
metamodel uses MOF as its meta-metamodel. Some of the key
points behind this decision are described in Section III-D.

In order to integrate the various modeling languages into the
IoT-PML, we have been carefully analyzing their metamodels
(see Section II-A) and identifying common abstractions which

IoT-PML

Model Abstraction Layer (MAL)

Core

L0

NFP GSM

L1

Registers Implementation...

Ln

External Metamodels

Metamodel B

D
riv

er B

Metamodel C

D
riv

er C

Metamodel A

D
rive

r A

Fig. 2: Conceptual architecture of the IoT-PML.

AnnotatableElement

Block RelationshipAnnotation

«dataType»
MRef

Element

+ link: MRef [0..1]

+containedBlock *
+container

0..1

+target

1..*

+source

1

+annotatedElement

1..*

Fig. 3: The domain model of the IoT-PML Core module.

we then added to the IoT-PML metamodel. Our goal here is
not to create a gargantuan metamodel that is able to reflect
every detail of every IoT-related DSML. Instead, we aim to
provide just the right level of abstraction to enable effective
DSML integration and cooperation, enhancing the capabilities
of model-based activities.

A. Architecture - Layers, Modules, and Concepts

The metamodel has a modular, layered architecture, which
is illustrated in Fig. 2. Each layer Li subsumes concepts
at a particular level of genericity i ∈ N ∪ {0}, with i = 0
indicating the highest level of genericity. Related concepts
are packaged into modules, which reside in exactly one layer.
These concepts represent common abstractions of a number of
heterogeneous metamodels. The lower the level of genericity,
the smaller the number of metamodels to which these concepts
apply. The modules within a given layer Li, i > 0 may only
depend on modules on the same or on lower layers. Each
concept in a given module must inherit from at least one
concept of the Core module, either directly or indirectly.

The Core module, which is located at layer L0, is a
lightweight kernel metamodel providing basic generic con-
cepts used by the modules at all subsequent layers, such as the

general system modeling (GSM) or non-functional property
(NFP) modules. The NFP module provides basic concepts
for modeling NFPs related to timing as well as memory
and power consumption, enabling model-based analyses and
optimizations. For instance, power saving modes of a given
hardware component can be described using concepts from
the NFP module. Fig. 3 shows the domain model of the Core
module.

At the most abstract level, the Core module has the concept
of an Element1, which is the basic type for each element in
the IoT-PML. This concept is subdivided into the concepts
AnnotatableElement and Annotation. AnnotatableElement
is further subdivided into the concepts Block, which may
contain other Blocks, and Relationship, which models directed
relationships between Blocks. Conceptually, the Block concept
is aligned with the Block element introduced in SysML.

Layer Ln
2 is the outermost layer of the IoT-PML meta-

model, containing modules at the highest level of detail which
usually reflect concepts common to only a limited number
of DSMLs. An example of such a module is the Registers
module, which facilitates modeling of hardware registers. It
is closely aligned with the IP-XACT standard, but extends it
by introducing additional subtypes for registers and bit fields,
such as command or configuration registers. Transformations
using the IoT-PML typically work with modules located at this
layer.

B. Facilitating Model Linkage

A layered architecture enables us to address semantic and
structural heterogeneities of closely related metamodels by
bridging related concepts via common abstractions. As can be
seen in Fig. 3, the Element type is able to reference an external
metamodel element via its link attribute. Consequently, every
concept in the IoT-PML has this ability, which facilitates the
linkage between data stored in heterogeneous metamodels. The
reference to a given external model element e is realized as a
model reference (MRef), which has the format

M:URIe,

where M is the globally unique identifier for the external
metamodel and URIe is the Uniform Resource Identifier (URI)
of the referenced model element.

The actual linkage during runtime is performed by a model
abstraction layer (MAL), which is illustrated in Fig. 2. The
MAL provides a set of concept-specific APIs for reading the
data contained in the referenced model, so they can be used
for transformations or analyses. Metamodel-specific drivers
implement the MAL APIs for each supported concept to
facilitate data handling.

This approach is comparable to the model connectivity
layer employed in the Epsilon language family [23] or the

1Throughout this paper, we adhere to the following stylistic conventions.
Elements of the IoT-PML are boldfaced and italicized, while elements of
external metamodels are only italicized. We use upper-case letters for element
types, while attributes of elements are written in lower-case letters.

2At the moment, the number of layers is not fixed as the IoT-PML is in its
early stages of development.

Top-Down Workflow

R
e
fin

e

Link

F
e
e
db

a
ck

Bottom-Up Workflow

Link

F
e
ed

b
ac

kUse
Cases

Require-
ments

......

DSMLs Code

Code Generation

Analysis & Optimization

DSMLs

IoT-PML

Code Generation

Analysis & Optimization

IoT-PML

Fig. 4: Conceptual top-down and bottom-up workflows with
the IoT-PML.

technological connectors of OpenFlexo [24]. No explicit se-
mantics are defined for this link, which creates a loose
coupling between the IoT-PML metamodel and the various
external metamodels, giving users the ability to select and
link to the metamodel best suited for the task at hand. For
our approach to work, we have to assume that the MRef
of the referenced model element does not change between
subsequent serializations and deserializations of the external
model.

C. Extensibility

Users can extend the IoT-PML by adding so-called user
modules, which can be located at any layer in the IoT-PML,
but may not introduce additional layers. Concepts in user
modules have to conform to the same restrictions as the
concepts contained in built-in modules, that is, the rules de-
scribed in Section III-A apply. User modules extend the MAL
by introducing additional interfaces related to the concepts
defined in the user module. At model runtime, when an IoT-
PML model is loaded, the IoT-PML metamodel and MAL are
constructed dynamically by merging the data from the built-
in IoT-PML modules and user modules. In this sense, user
modules can be seen as plug-ins to the IoT-PML.

D. Implementation

Currently, the IoT-PML is a UML profile that uses a
limited subset of the UML metamodel, comparable to SysML.
We followed a best-practice approach3 in the design on the
profile. Each layer and module is represented by a package
and sub-profile, respectively. The module sub-profiles contain
stereotypes representing the module concepts. The stereotypes
extend the UML metaclasses which represent the closest match
in concept and semantics. In addition, attributes are transferred
over to the extended metaclass where possible. On the one
hand, this transfer reduces the size of the profile and avoids
data duplication, but is also required for certain relationships
between Blocks which cannot be modeled as inter-stereotype
relationships, such as composition [25].

There are a number of alternatives for the implementation
of the IoT-PML, but we deem a UML profile to be the best
choice for a number of reasons. Being a software-centric
modeling language, we can exploit the expressiveness of UML
for software-related aspects. In addition, a profile allows us to

3For instance, see https://www.itu.int/rec/T-REC-Z.119-200702-I/en

leverage the large ecosystem that has evolved around UML and
related MOF-based standards. This also includes model-related
tooling, such as analysis and transformation frameworks. Fur-
thermore, it simplifies the integration of other MOF-based
metamodels and eases the facilitation of tool support, given the
fact that industrial-grade UML-based modeling tools typically
provide generic mechanisms to work with UML profiles.

Our implementation of the IoT-PML and the MAL is based
on the Eclipse modeling ecosystem, in particular the Eclipse
Modeling Framework4 (EMF) and the Model Development
Tools project5, which includes the Papyrus modeling envi-
ronment6 and an EMF-based implementation of the UML
metamodel. The MAL is a set of callback operations which
can be used by model-to-model (M2M) and model-to-text
(M2T) transformations. User modules and the corresponding
MAL extensions are contributed to the IoT-PML via Eclipse
extension points.

E. Workflow Integration

The IoT-PML is kept as generic as possible, making it
methodology-independent and thus reusable in different con-
texts. It supports both top-down and bottom-up approaches.

1) Top-Down: The layered architecture of the IoT-PML
lends itself to top-down workflows similar to the OMG notion
of model-driven architecture. In addition, the language pro-
vides a number of architectural views which are motivated by
the IEEE 1471-2000 [26] recommendations for the architec-
tural description of software-intensive systems. Each of these
views is designed to address the needs of different stakeholders
during a specific phase of IoT software development and is
encapsulated in individual modules. One example of such a
view is the Subsystem view which describes the composition
of and relation between different system components. The
architectural views of the IoT-PML can be used to gradually
refine the model in a classical top-down approach, starting
from informal or formal use cases, requirements, and other
specifications, as illustrated in the left-hand side of Fig. 4.
Once the IoT-PML model is sufficiently refined, different
aspects of the IoT device are modeled using dedicated DSMLs.
These aspects are captured in the IoT-PML model using model
links. Code is then generated primarily from the IoT-PML
model, using model data from the referenced DSMLs. The
workflow may also include models from DSMLs which are
not linked to the IoT-PML model. These DMSLs may also
contribute to the generation of code. A variety of analyses and
optimizations can also be performed on the IoT-PML model
and the generated code, and the results can be fed back to the
IoT-PML model enabling an iterative top-down model-driven
design approach.

2) Bottom-Up: In a bottom-up workflow, the IoT-PML can
be used to integrate various existing artifacts, as depicted
in the right-hand side of Fig. 4. These artifacts typically
comprise models from other DSMLs, but may also include

4https://www.eclipse.org/modeling/emf/
5https://www.eclipse.org/modeling/mdt/
6https://www.eclipse.org/papyrus/

HwModeling

Registers Contracts

Register

FieldValue Contract

CommandRegister

Sensor ConfigurationParameter

+values

*

+configParams

*

+fields 1..*

Fig. 5: Simplified domain models of the Ln IoT-PML modules
containing some of the basic concepts referenced in the use
cases.

other artifacts, such as legacy code. Tools using the IoT-PML
model, such as code generators, optimizers, and analyzers,
can then exploit synergies between the data provided by
the different models using the MAL. Like in the top-down
workflow, results of these tools can be fed back to the IoT-
PML model for an iterative design approach.

IV. USE CASE

We present a use case illustrating a top-down workflow
using the IoT-PML based on a typical scenario.

A. IoT-PML Modules

The use case utilizes a number of IoT-PML modules located
at layer Ln, whose simplified domain models are shown in Fig.
5. Each of the concepts depicted here directly or indirectly
specializes concepts of the Core module, but for the sake of
clarity we have left out any cross-layer dependencies in the
figure.

The Contracts user module comprises only one concept, the
Contract, which specializes the Annotation type in the Core
module. The Contract concept models the function contracts
and object invariants of VCC that are required for the formal
verification of the device driver. In the use case, we show
how modular verification can be achieved using contracts.
We argue that contract-based design perfectly suits the top-
down workflow using the IoT-PML by hiding irrelevant detail
from the reasoning engine. The system designer can state
the specification of a function that has not been written yet
and provide implementation details during subsequent iteration
steps. Because each function can be verified separately by only
using the specification and not the implementation, changes
to the function body can be continuously checked against the
specification.

The Registers module contains concepts related to the
modeling of hardware registers and is closely aligned with the
IP-XACT standard. In addition, it comprises some semantic
extensions to Registers, such as CommandRegister. Finally,
the HwModeling module includes concepts related to the mod-
eling of hardware, such as Sensors, which can be configured at

Cortex-M4F

ETM

Instruction Memory
(1 MB)

Data Memory
(256 KB)

G
P

IO

I²
C

B
L

E
 R

a
d

io

A
D

C

Battery

Hall Switch

SHTC3

BMP280

EEPROM

Temperature

Humidity

Pressure

ID

n
R

F
5

2
8

4
0

Fig. 6: Architecture of the IoT sensor device.

runtime with ConfigurationParameters. The concepts in the
HwModeling and Registers modules all specialize the GSM
module, while the Contracts module directly specializes the
Core module.

B. IoT Sensor Device

Fig. 6 depicts an ultra-thin IoT sensor device featuring com-
mercial off-the-shelf (COTS) peripherals, which communicate
with the main processor via the I2C interface. One of these
peripherals is the Sensirion SHTC3 temperature and humidity
sensor, which uses a 16-bit command register.

In order to ease application software development and
reduce development time, the firmware for the sensor device is
running on RIOT OS7, which provides the basic infrastructure
for essential tasks such as thread scheduling and hardware
interfacing. Because the sensor device is running in a safety-
critical environment, the part of the firmware responsible for
handling the SHTC3 peripheral, i.e. the driver, needs to be
verified. We assume that the peripheral vendor provisioned a
datasheet and supplementary IP-XACT description. The RIOT
OS driver for the COTS sensor needs to be developed first,
since no such driver is available for the OS. To speed up
development time, we want to generate a skeleton of the
driver code from an IoT-PML model, including contracts for
verification. An overview of the use case illustrating the main
steps and artifacts is given in Fig. 7.

In order to facilitate the generation of the driver skeleton,
a driver-centric IoT-PML model 1 of the COTS sensor is
created using its datasheet and IP-XACT description. Here,
the COTS sensor is modeled as a Component with a Sensor
stereotype. The command register of the COTS sensor is
modeled as a CommandRegister which links to its IP-XACT
description using an MRef as described in Section III-B. In
this case, the IP-XACT model and the register within the
model are referenced using a relative path pointing to the XML
file and the XML identifier of the register, respectively. Device

7https://riot-os.org/

sensor.xml

IP-XACT DriverTemplates MAL

Code Generation

Link

Driver Skeleton with Contracts

IoT-PML Model

1

2 3 4

.........

5 6

Fig. 7: Overview of the top-down use case.

states and device-related driver configuration parameters are
modeled as States and ConfigurationParameters, which are
applied to Properties. User-provided functions are modeled as
Operations. The properties and functions are annotated with
Contracts.

From this IoT-PML model, the basic skeleton of the COTS
sensor driver for the RIOT OS is generated by a template-
based approach utilizing the Epsilon Generation Language8

(EGL). The skeleton comprises the entire driver infrastructure,

8https://www.eclipse.org/epsilon/doc/egl/

including C headers and source code files. One header contains
the device commands 5 , which is generated by the EGL
template depicted in 2 . In addition, ghost predicates for
the device are generated, which are ghost functions. In our
example we use the ghost predicate p_SHTC3_CMD_Valid
to check if a command, represented as a 16-bit unsigned
integer, is one of the valid commands that can be written to the
command register of the CTOS sensor. The template requests
a handle on the CommandRegister from the MAL via the
getHandle() method. The returned handle is an instance

of the Java interface IRegister 3 , which is part of our im-
plementation of the MAL for Registers. The interface specifies
a number of methods for data access, including methods for
retrieving the Fields and Values of a given Register. In order
to create the handle, the MAL first resolves the MRef specified
in the CommandRegister and dispatches the instantiation of
an IRegister to the driver corresponding to the metamodel
in the MRef. In our case, the handle returned by the MAL is
an instance of IPXACTRegister 4 , which is the driver
for Registers that enables access to data of register model
elements stored in IP-XACT files. The implementation utilizes
the Java API for XML processing (JAXP) and retrieves the
data from registers using the XML Path Language9 (XPath).

The generated C source code files contain function stubs
6 annotated with the contracts specified in the IoT-PML

model. Furthermore, object invariants are included in the
corresponding sections of the generated code. The gener-
ated driver skeleton contains the specifications for func-
tions and objects. In our example the device state is
represented by the struct shtc3_dev_t with an ad-
ditional invariant that specifies that the device parame-
ters represented by the struct shtc3_params_t are
owned by the device itself. In addition, the ghost field
_(ghost uint16_t cmd) is added to allow for reasoning
about the last command that was sent to the device. To
reason about the device state in function contracts, we in-
troduce the ghost predicates p_SHTC3_STATE_awake and
P_SHTC3_STATE_initialized that are automatically
generated from the IoT-PML model.

The contract for the function shtc3_send_command
states that the function will write to the argument dev
using the VCC writes clause. The part _(maintains
\wrapped(dev)) of the function contract defines that the
function guarantees that all invariants of the object dev
are preserved. Additionally, the contract specifies that the
device must be in the initialized state and that the argument
uint16_t cmd must be a valid command. We realize this
requirement by utilizing the aforementioned ghost predicates
in the requires clause. The ensures clause of the contract guar-
antees that the function will always return one of the three pos-
sible return values: SHTC3_OK, SHTC3_NO_RESPONSE,
SHTC3_BUS_ERROR.

With contracts in place, developers can then implement the
device driver by filling out the function stubs. The implemen-
tation process can now be accompanied by an iterative static
verification process using the VCC tool. Because the verifi-
cation process is modular, not all function implementations
must be available as long as the function stubs and function
declarations are annotated with contracts. Due to the loose
coupling provided by the model reference mechanism, the
IoT-PML model is not affected by any modifications of the
IP-XACT model, as long as the referenced model element is
not deleted from the latter. This enhances co-design, as the
IP-XACT and IoT-PML models can be worked on in parallel.

9https://www.w3.org/TR/xpath/all/

If the IP-XACT model is modified, parts of the code need to
be regenerated to accomodate the changes.

V. RELATED WORK

There exists a large body of work that addresses the problem
of heterogeneous metamodel integration. As DSMLs can be
seen as individual viewpoints on the system under study
[27], the topic also extends to model viewpoint integration.
Some of the more recent approaches include facet-oriented
modeling [28], model federation [24], and template-based
metamodeling [29], which deal with metamodel heterogeneity
on the syntactical, structural, and semantic level. Bruneliere
et al. give a comprehensive survey of related approaches in
[30]. Common to these works is that they are not focused on
a particular domain, but instead provide generic mechanisms
which we use as inspiration and technical foundation for the
IoT-PML, as described in Section III-B. In addition, they
typically lack MOF-compliancy, limiting access to existing
model-based frameworks and tools.

For particular domains, there have been a number of ef-
forts to address metamodel heterogeneity by creating uni-
fied modeling languages. For instance, the Unified Enterprise
Modeling Language [31] unified different metamodels for
the enterprise modeling domain. UML is also the result of
such an effort in the software domain, as it unified the large
number of different software modeling approaches and related
methodologies that were in use in the early 1990s. Another
example is WebDSL [32] which is an integrated modular
language for web application development. To the best of
our knowledge, there exists no such modeling language in
the domain of ultra-thin software for resource-constrained IoT
devices. General-purpose languages, such as UML have only
very limited support for hardware-related aspects, even when
used in conjunction with extensions such as MARTE. On
the other hand, DSMLs, such as IP-XACT are focused on
their domain and thus typically ignore aspects not directly
required for the modeling task at hand. The unified metamodel
for resource-constrained embedded systems proposed by Ziani
et al. in [33] is a combination of a limited selection of
related modeling languages, such as MARTE and SysML.
However, their metamodel does not allow hardware modeling
at the same level of detail as the IoT-PML. For instance, it is
not possible to model hardware registers. Moreover, a model
linkage mechanism is not provided.

VI. CONCLUSIONS AND FUTURE WORK

We have presented the IoT-PML, a novel unifying mod-
eling language for the development of firmware running on
resource-constrained IoT devices. The language integrates the
various DSMLs related to the IoT and embedded software
domains by introducing concepts common to these DSMLs
on multiple layers of abstraction and providing a reference
mechanism that allows IoT-PML model elements to link to
elements contained in DSML models. The potential benefits
of this integration are considerable. Primarily, it allows model-
based activities based on the IoT-PML to leverage data syn-
ergies between the different DSMLs, increasing the power of

code generators, optimizations, and analyses. Furthermore, the
language simplifies co-design and coordination between users
of the different DSMLs.

The language is in its early stages of development, which
means the collection of topics for future work is extensive.
Currently, the IoT-PML is implemented as a UML profile,
allowing us to leverage the extensive software modeling ca-
pabilities of UML and the tooling ecosystem that has evolved
around the language over the last decade. This implementation
may be subject to change, as both the development of the
language and the analysis of metamodels used in the IoT
and embedded software domains is still ongoing. Should we
deem the current implementation too restrictive in terms of
expressiveness, we plan to implement the IoT-PML as a
standalone MOF-compliant modeling language.

While the model reference mechanism and model abstrac-
tion layer can be used by tools running on IoT-PML models,
there is currently very limited in-editor support for these
features. At the moment, the model reference has to be
manually put in and no indication inside the editor is given
that the reference is valid. Furthermore, the data contained
in the referenced model element are not shown in the editor.
Similarly, feedback from analysis and optimization tools, such
as the XML report generated by VCC, cannot be fed back
to the IoT-PML model. How this data can be visualized and
possibly edited from inside the editor is one of the primary
subjects of future work.

Another related major topic is the consistency between the
data in the referenced models and its representation in the IoT-
PML. Although the coupling is relatively loose, consistency
issues may still arise if the referenced model element is deleted
or an attribute is modified that is reflected in the IoT-PML
model. With respect to the particular use case we presented in
this paper, there are extensive possibilities for future work in
terms of general automation of the workflow processes. For
instance, contracts are manually annotated in the model and
require some a priori knowledge about the structure of the
generated code when used in a top-down workflow. Future
work may investigate the generation of contracts based on
constraints expressed in the model using OCL.

REFERENCES

[1] A. Thierer and A. Castillo, “Projecting the growth
and economic impact of the Internet of Things,”
https://www.mercatus.org/publication/projecting-growth-and-economic-
impact-internet-things, 2015.

[2] P. Baker, S. Loh, and F. Well, “Model-driven engineering in a large
industrial context - Motorola case study,” in MODELS 2005, pp. 476–
491, 2005.

[3] J. Davies, J. Gibbons, S. Harris, and C. Crichton, “The CancerGrid
experience: metadata-based model-driven engineering for clinical trials,”
in in Sci. Comput. Program, vol. 89, pp. 126–143, 2014.

[4] M. Brambilla and P. Fraternali, “Large-scale model-driven engineering
in a large industrial context - the WebML and WebRatio experience,”
in Sci. Comput. Program, vol. 89, pp. 71–87, 2014.

[5] M. Wimmer and P. Langer, “A benchmark for model matching systems:
the heterogeneous metamodel case,” in Softwaretechnik-Trends, vol. 33,
2013.

[6] B. Combemale, J. Deantoni, B. Baudry, R. B. France, J. M. Jézéquel,
and J. Gray, “Globalizing modeling languages,” in COMPUTER, vol.
47, pp. 68–71, 2014.

[7] J. Stecklein, “Error cost escalation through the project life cycle,”
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100036670.pdf,
NASA, Tech. Rep., 2004.

[8] X. Bellekens, A. Seeam, K. Nieradzinska, C. Tachtatzis, A. Clearyy, R.
Atkinson, and I. Andonovic, “Cyber-physical-security model for safety-
critical IoT infrastructures,” in WWRF35, 2015.

[9] N. Harrand, F. Fleurey, B. Morin, and K. E. Husa, “ThingML: a language
and code generation framework for heterogeneous targets,” in MODELS
2016, pp. 125–135, 2016.

[10] B. Negash, T. Westerlund, A. M. Rahmani, P. Liljeberg, and H. Ten-
hunen, “DoS-IL: a domain-specific Internet of Things language for
resource constrained devices,” in ANT 2017, pp. 416–423, 2017.

[11] D. Beaulaton, N. B. Said, I. Cristecu, R. Fleurquin, A. Legay, J.
Quilbeauf, and S. Sadou, “A language for analyzing security of IoT
systems,” in SoSE 2018, pp. 37–44, 2018.

[12] M. Adda and R. Saad, “A data sharing strategy and DSL for service
discovery, selection and consumption for the IoT,” in EUSPN-2014, pp.
92–100, 2014.

[13] M. Hussein, S. Li, and A. Radermacher “Model-driven development of
adaptive IoT systems,” in MODELS 2017, 2017.

[14] IEEE Standards Association, “IEEE 1685-2014 - IEEE standard for IP-
XACT, standard structure for packaging, integrating, and reusing IP
within tool flows,” 2010.

[15] Object Management Group, “OMG Unified Modeling Language™
(OMG UML),” 2015.

[16] Object Management Group, “OMG Systems Modeling Language (OMG
SysML™),” 2015.

[17] Object Management Group, “UML profile for MARTE: modeling and
analysis of real-time embedded systems,” 2011.

[18] Object Management Group, “OMG Meta Object Facility (MOF) core
specification,” 2016.

[19] Object Management Group, “Object Constraint Language,” 2014.
[20] T. Jürgen, “Hardware/software codesign: the past, the present, and

predicting the future,” in Proc. IEEE, vol. 100, pp. 1411–1430, 2012.
[21] V. D’Silva, D. Kroening, and G. Weissenbacher, “A survey of automated

techniques for formal software verification,” in IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol. 27, pp. 1165–1178, 2008.

[22] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal,
T. Santen, W. Schulte, and S. Tobies, “VCC: a practical system for
verifying concurrent C,” in TPHOLs 2009, pp. 23–42, 2009.

[23] D. S. Kolovos, R. F. Paige, and F. A. C. Polack, “The Epsilon Object
Language (EOL),” in ECMDA-FA 2006, pp. 128–142, 2006.

[24] F. R. Golra, A. Beugnard, F. Dagnat, S. Guerin, and C. Guychard,
“Addressing modularity for heterogeneous multi-model systems using
model federation,” in MODULARITY Companion 2016, pp. 206–211,
2016.

[25] Object Management Group, “UML24 - composite tags,”
https://issues.omg.org/issues/UML24-50 (Last accessed: 2019/02/15).

[26] IEEE Standards Association, “IEEE 1471-2000 - IEEE recommended
practice for architectural description for software-intensive systems”,
2000.

[27] A. Vallecillo, “On the combination of domain specific modeling lan-
guages,” in ECMFA 2010, pp. 305–320, 2010.

[28] J. de Lara, E. Guerra, J. Kienzle, and Y. Hattab, “Facet-oriented
modelling: open objects for Model-Driven Engineering,” in SLE 2018,
pp. 147–159, 2018.

[29] J. de Lara, E. Guerra, “Generic meta-modelling with concepts, templates
and mixin layers,” in MODELS 2010, pp. 16–30, 2010.

[30] H. Bruneliere, E. Burger, J. Cabot, and M. Wimmer, “A feature-based
survey of model view approaches,” in SoSyM 2017, pp. 1–22, 2017.

[31] F. Vernadat, “UEML: towards a unified enterprise modelling language,”
in International Journal of Production Research, vol. 40, pp. 4309–4321,
2002.

[32] E. Visser, “WebDSL: a case study in domain-specific language engi-
neering,” in GTTSE 2007, 2007.

[33] A. Ziani, B. Hamid, and S. Trujillo, “Towards a unified meta-model for
resources-constrained embedded systems,” in SEAA 2011, pp. 485–492,
2011.

