
Simulation of Model Execution for Embedded
Systems

Jörg Christian Kirchhof
Software Engineering

RWTH Aachen University
Aachen, Germany

kirchhof@se-rwth.de

Evgeny Kusmenko
Software Engineering

RWTH Aachen University
Aachen, Germany

kusmenko@se-rwth.de

Jean Meurice
Software Engineering

RWTH Aachen University
Aachen, Germany

jean.meurice@rwth-aachen.de

Bernhard Rumpe
Software Engineering

RWTH Aachen University
Aachen, Germany
rumpe@se-rwth.de

Abstract—In automotive and robotics, simulation is an indis-
pensable tool for testing and validation. A simulator is able to test
a system under varying conditions at low cost in a non-safety-
critical environment. Furthermore, in the development process
of a new vehicle, the first prototype is mostly produced after a
long design phase, which can take up to several years. Before
the prototype is available, test can only be performed in a
simulation. To make the simulation results reliable, both the
system and its environment need to be modeled as realistic as
possible. As modern vehicles include a large amount of software,
the execution of vehicle software needs to be simulated with
respect to the underlying E/E infrastructure. In this paper, we
present a simulation framework for the execution of vehicle
control models deployed in a vehicle network. Furthermore, the
execution simulator is embedded into a vehicle simulator, making
it possible to validate the vehicle software functionality under the
given hardware conditions.

Index Terms—simulation, automotive, E/E infrastructure,
model execution,

I. INTRODUCTION

Software for embedded systems, especially for automotive
applications and Cyber-Physical System (CPS), is getting
increasingly more complex. This is, partly, due to the in-
creasingly challenging tasks these systems have to solve.
Future cars are expected to include complex functionalities
such as autonomous and cooperative driving. As software
gets more complex, it also gets harder to develop and test.
Models can be used to abstract from this complexity and,
thus, make the development process both simpler and more
reliable. However, the changing environmental influences still
require the software to be tested in a large number of different
scenarios to ensure its reliable execution. Due to time and
resource constraints, the software cannot be tested solely on
prototypical hardware. Moreover, the hardware may not even
be developed before the software.

Simulators allow to effortlessly test software in a large
number of scenarios and under a multitude of environmental
influences. As simulators only simulate the real world, they
make abstractions from the real world. As a result, the results
calculated by simulators are expected to deviate to a certain
extent from the results that would be observed on a similar
setup in the real world. Small deviations are expected and can
be tolerated. However, strong abstractions from the real world
can lead to imprecise results [1]. This is especially important

in autonomous and cooperative driving applications as an error
of the system might not only cause large monetary damages
but also threaten human lives. Thus, an accurate prediction of
the system’s behavior is crucial for a simulation.

An important aspect of accurately simulating the behavior
of a system is the simulation of its time behavior. Embedded
systems, such as Electronic Control Units (ECUs), are often
resource-limited, especially compared to the computers used
to develop the software they execute. If the system is not
capable of executing the desired functionality within certain
time limits, results may often be worthless. For example, if a
system used to trigger the brakes in an autonomous car is too
slow, the car might crash.

Existing solutions either offer a precise prediction of the
embedded system’s time behavior at the cost of a time-
consuming simulation or require developers to model the
system-under-test within the simulation environment, hence
inducing a source for hard to find errors. In this paper, we
present a method for integrating a hardware emulator of
the target platform into a general-purpose driving simulator
responsible for simulating the environmental influences of
and interactions between vehicles. This allows us to combine
the efficient simulation of the MontiSim simulator with the
accurately predicted time-behavior of a hardware emulator.
The control units within the MontiSim simulator are defined
using the EmbeddedMontiArc (EMA) language. Thereby, we
leverage the benefits of a model-driven development process.
At the same time, using the binaries compiled from the
source code generated from the EMA models as input for the
emulation allows us to both circumvent the time-consuming
creation of a second model solely meant for simulation and
eliminate the source of potential errors induces by this task.

The remainder of this paper is structured as follows.
Sec. II introduces EMA, MontiSim, and introduces termi-
nology. Sec. III lists the requirements for our simulator.
Following that, Sec. IV describes our hardware emulator and
its integration in MontiSim in detail. Our solution is then
evaluated in Sec. V. Sec. VI presents related work and Sec. VII
concludes the paper.



II. BACKGROUND

The models for which the proposed solution provides a
simulation environment are created using the EmbeddedMon-
tiArc (EMA) language [2], [3]. This is a modelling language
used for describing the architecture of components and their
communication. A component has a set of input and output
ports (typed variables) and can have a set of sub-components.
Components use these ports to exchange values with other
components. Therefore, ports can be connected to other ports
using connectors. A component “cycle” (an update) uses the
current state of the input ports to update the output ports.
This happens through computations or the use of its sub-
components. The port system supports generic, array and
vector types, all of which are strongly typed. EMA models
are used to generate C++ code, which is then compiled using
standard compilers. Furthermore, the EMA language family
contains extensions allowing the integration of, e.g., equation
solvers or neural networks with their specific language exten-
sions.

The simulation environment MontiSim is an autonomous
vehicle simulator [4], [5]. Its goal is testing autopilots and
other vehicle software developed using the EMA language and
its extensions. It is capable of loading a simulation described
using a simulation language. This language describes the
environment of the simulation, i.e., the map, the weather
conditions, time of day, etc., as well as the set of vehicles
that are to be simulated. The map on which the vehicles drive
is imported from OpenStreetMap [6] data.

The vehicles are configured with start and destination coor-
dinates, a physical vehicle model and an E/E setup. This E/E
setup contains the different ECUs and their software alongside
sensors, actuators, and communication buses.

Prior to the presented simulation integration, the MontiSim
simulator had no means of representing the execution time of
vehicle software within the simulation. This is problematic as
soon as the execution time of the software surpasses the tick
duration of the simulator, in which case the software gains an
unrealistic computation power in regards to the simulated time.
This is a critical missing aspect of the software simulation,
especially for automotive applications. Therefore, the proposed
simulator fills this gap by representing the computation time
of software inside the MontiSim simulator.

The proposed simulator is mainly used as sub-simulator
inside the MontiSim simulator. To differentiate between the
simulation levels, the following terminology will be used:
Emulator The proposed simulator that emulates the behavior

of computer hardware.
Emulation The virtual environment in which the emulated

software lives.
Simulator The overarching simulator using the computer

hardware simulator inside its simulation.
The difference between emulation and simulation is that

a emulation computes the underlying behavior of a system
while the simulation only provides the visible effects of such a
system. The proposed sub-simulator is nearer to the emulator

concept than the MontiSim simulator, which motivates this
denomination.

III. REQUIREMENTS

Following the goals of the MontiSim simulator as well as
those of EMA models, the emulator aims at fulfilling the
following requirements:
R1 Correct software behavior: the emulator must reproduce

the real logic behavior of the emulated software. The code
emulation must yield the same outputs as when executed
on real hardware.

R2 Time evaluation: the emulator must evaluate the execution
time of the emulated software so that this critical aspect
can be represented in the overarching simulation.

R3 Reproducibility of the simulations: given a simulation
description and EMA models (the emulated software),
the simulation must yield the same output independently
of the platform and hardware used.

R4 Platform-independence: it must be multi-platform in the
first place and allow the emulation of software compiled
for other platforms.

R5 Variability of the hardware models: the properties of
the emulated hardware running the EMA models must
be configurable. This includes, e.g., the CPU model, its
frequency, the memory properties, etc.

R6 Generic emulator: the hardware emulator can be used to
emulate any program and evaluate their execution time.

IV. HARDWARE EMULATOR

The proposed simulator will be referred to as the Hardware
Emulator. This emulator contains a program emulating com-
ponent as well as models for the evaluation of the execution
time of the program. The Hardware Emulator does not run an
operating system in the virtual computer but rather emulates
its functionalities from outside the emulation.

The following sections will describe the components of the
Hardware Emulator and their functionalities.

A. Unicorn Emulator

The program emulation capabilities of the Hardware Em-
ulator come from the existing Unicorn emulator [7]. This
emulator manages registers and virtual memory around a
QEMU core [8]. The engine is capable of emulating the
behavior of programs under multiple architectures and in
different modes. In this case, the 64-bit mode of the x86
architecture is used. The Unicorn emulator is open-source and
multi-platform. Since the emulated architecture is independent
of the system running the emulator, it is also cross-platform
(R4).

The interface of the Unicorn engine allows allocating and
managing virtual memory sections. The interface also allows
reading and changing the registers related to the used archi-
tecture. Finally, it allows starting a single-threaded program
execution at an arbitrary memory address. By taking advantage
of this fact and by knowing the address of a specific function,



Computer

Time evaluation
ComputerTime
CodeDecoder
MemoryTime
Cache model

OS
Loader
System functions
FunctionCalling

Memory
MemorySections
Stack
Heap

Registers

Unicorn engine

Fig. 1. High-level overview of the main component of the Hardware Emulator.

functions of a program can be executed from outside the em-
ulator. The emulator then reproduces the behavior of program
instructions depending on the contents of the registers and the
memory (R1).

Finally, the Unicorn engine allows monitoring every instruc-
tion execution and memory access. This enables the evaluation
of the different execution time models of the Hardware Emu-
lator (R2).

B. Computer Model

The Hardware Emulator is built in a component and sub-
component style for logical separation of the different virtual
computer parts. The main component is a Computer compo-
nent. Its final goal is to be able to set up a software execution
environment, load a program and present an interface to call
the functions of this program.

Fig. 1 shows the Computer component and the types of
sub-components it contains. The memory abstractions include
a simplified interface to the registers, an object-oriented rep-
resentation of the virtual-memory sections, and components
representing the program stack and dynamic heap. The OS
emulation component is an instance of a program loader, a
set of emulated operating system functions and a specification
of the function calling standard used under a specific oper-
ating system. There are currently implementations of the OS
emulation for Linux and Windows.

The emulator is currently built to load only one program.
Therefore, the executed programs must be compiled with static
libraries (or archives under Linux). Furthermore, the emulator
does not implement program unloading. When the lifetime
of a specific program ends, the entire Computer component
is destroyed, including its Unicorn engine instance. Once the
program is loaded, there can be an infinite number of calls to
its functions and the state will be saved.

However, only the encountered operating system functions,
operating system objects, and function argument types are
implemented. Thus, new models might require some updates
of the emulator.

C. Memory and Register Abstractions

To ease the interaction with the Unicorn engine and memory
management, a set of components present an object-oriented
interface for the original C functions of the Unicorn interface.

1) Registers: The Registers component allows direct access
and type casting to the registers. It also prevents a bug when
reading the registers inside any of the Unicorn monitoring
callback. When trying to read the contents of a register into
a buffer that lived on the stack inside a Unicorn callback,
the entire program would crash. By using a buffer allocated
before running the engine, it allows to access the registers
inside callback which is critical to emulating the operating
system functionalities.

2) Memory and memory sections: The Memory component
encapsulates Unicorn engine functionalities related to its in-
ternal memory system. It is responsible for allocating and
managing MemorySection objects.

These contain meta-information about the allocated virtual
memory sections of the Unicorn engine. This includes the
start address and size of sections as well as their reading,
writing, and execution permissions. A MemorySection also
holds debug information such as a section and module name,
an optional mapping to the program file if the content of the
section originates from the program file, and an annotation
system. This annotation system allows adding “Notes” on
any memory range. This is used to mark and name symbols,
operating system structures, and system handles. The Memory
component also contains a lookup map to efficiently access the
MemorySection objects corresponding to virtual addresses.

The start addresses and sizes of the virtual memory sec-
tions of the Unicorn engine must be multiples of an inter-
nal page size. Using the page size, the desired addresses
and sizes of memory sections can be padded to multiples
of the page size using the following integer arithmetic:
start padded = (start address/page size) ∗ page size,
size = end address − start padded and size padded =
(((size−1)/page size)+1)∗page size. For a desired mem-
ory range with start address start address (inclusive), end
address end address (exclusive) and page size the internal
page size of the engine, this will give a padded memory section
with start address start padded and size size padded.

To simplify the memory layout of the computer, the dif-
ferent memory sections have predefined ranges in the virtual
memory space that are defined inside a namespace for easy
arrangement.

To help interact with the emulation memory from the
outside, a SectionStack component can be attached to any
MemorySection. This is a minimalistic allocator that works
in a stack fashion on the section and does not implement de-
allocation. This allows for fast laying out of objects in the
computer memory. This is used by various other components
of the Computer.

The last elements of the Memory component are helper
functions to read certain data types from the engine’s memory.
Currently implemented are functions to read and write strings
of chars and wide chars as well as functions to read multi-byte
numbers. The string-reading functions read the memory one
by one from a starting address into a buffer until encountering
a null character or reading invalid memory. In the latter case,
it returns an empty string (where the first character is the null



character). If successful, it returns a char pointer to the buffer
it used to save the string. The number-reading functions read
the number of bytes making up the number from the emulator
and cast the result to the correct type.

3) Virtual stack and heap: Virtual stack and heap compo-
nents use the memory system to manage memory sections used
as stack and heap for the emulated program. The heap com-
ponent has a memory allocation emulation that can be used
by the operating system emulation to dynamically allocate and
free memory chunks from the heap. The stack component also
presents push and pop functions to interact with the virtual
stack from outside the emulation.

D. Operating System Emulation

The emulator does not load a complete operating system
image into the emulation. This allows a lighter emulation
environment and more control over the emulated program. It
also opens the possibility to model simpler processor chips that
do not run operating systems but interact with the program on
a lower level.

The models currently emulated are compiled for a standard
x86 Linux or Windows distributions (64-bit mode). This stems
from the necessity to also run the model programs in a
non-emulator environment for lighter usage in larger scale
simulations where the time aspect of the program execution
is not important. In this case, the models can be loaded as a
Windows or Linux library directly into the simulator.

In order to emulate such programs, the emulator must carry
out the roles of an operating system, i.e., loading the program
into the computer’s memory, linking it to system functionali-
ties, and providing a way to locate and call the functions of
the program. This is embodied in the OS component of the
Computer model, which is currently instantiated with a Linux
or Windows version of the operating system emulation.

1) Program loading: The first step in loading a program
into memory is parsing it. The format of the program files
is the Portable Executable (PE) format for Windows and the
Executable and Linkable Format (ELF) for Linux (and Unix-
based systems in general). Both formats are mainly used for
executables and libraries. They start with a header to identify
the format, the target system, and mode. These headers point
to the different structures contained in the file and identify
various tables. The structure of a Linux program is shown in
Fig. 2. The PE format has some differences but in this context,
the functionality is similar to ELF files.

The parsing of Linux programs is performed manually using
the structures and values defined in the Linux source code
(elf.h, elfcode.h, elf-em.h, . . . ). The created ELF parser reads
a file following the format and fills the structures with the file’s
data. This is done by placing pointers of the structures’ types at
the right positions on the original file data. The pointers to the
start of tables can be used directly to access the table’s content
through indices. Parsing of Windows programs is performed
with the help of the pe-parse library.

The names of different elements in the program files such
as section names or symbol names are located in string tables.

ELF File:

Identification
header

magic number
class (32 - 64 bit mode)
. . .

ELF header

type
. . .
program header table description
section header table description
section name string table index

Program
Header
table

Program Header
Program Header
. . .

Sections

. . .

Symbol table
section:

Symbol
Symbol

. . .
. . .

Relocation
table section:

Relocation
Relocation

. . .
. . .

Section
Header
table

Section Header
Section Header
. . .

Fig. 2. Overview of the ELF file structure.

This common mechanism puts all the strings of a program in a
block separated by the string termination character (’\0’). The
places referring to names or strings in the file then just give
the start position of the string in the string table. The location
of the string tables is given in the headers of the files.

The formats specify a list of chunks in the program file
that have to be loaded into the memory of the computer at
correct virtual addresses. In ELF files, these are the Program
Header entries which specify a part of the file (that can contain
multiple sections). In PE files, there are just sections in the
file, but flags specify if it has to be loaded into memory at
runtime. These chunks contain, e.g., the program code, the
program data, and the jump tables for external functions. Using
the Memory component of the emulator, a MemorySection
is allocated for every section of the program. The correct
read, write and execution permissions are set depending on
the descriptors of the program file.

The next step is reading the symbol tables and registering
the symbols contained in the file. The symbols representing
public objects and functions are called Exports in the PE
format and are in a special table. The symbols in the ELF
file are not sorted in this way but have additional descriptors
giving information about linkage (from which the functions
of the program can be deduced). These are registered in the
symbol table of the emulator (hashmap with the name as the
key and the virtual address as value) and later used to discover
the interface of the EMA model.

2) System functionalities: The program also has to be able
to make calls to the operating system. These function symbols
are not resolved at compile time so they have to be set by the
operating system or in the present case by the emulation of
the operating system. The places where the program needs



those symbols are listed as Relocations in ELF files. In PE
files these are in a list of Imports.

An ELF Relocation or a PE Import specifies a location
where the address of a system call has to be written in the
virtual memory. This location is an entry in a “jump table”
(or branch table). Programs use the call instruction to make
function calls. It is responsible for pushing the return address
to the stack, but it can not jump to a variable location. This
is accomplished by a special jmp instruction placed at the
target location of the call instruction. This variant of the
jump instruction is set to jump to the location stored at a
given address. This address is the address of the jump table
entry and is coded into the instruction. The combination of
these two instructions is a standard way of making calls to
functions not resolved at compile time.

Those system functions are not inside the emulator. For
this, an escape system is implemented where the address
given to the program points to a special section in the virtual
space. Using the monitoring hook of the Unicorn engine,
the emulator checks if the next instruction happens in this
section. If so it catches the call and looks up the registered
external system functions, which are implemented outside
the emulation. These external functions can use the different
components of the Computer to emulate the actions of the
called function.

To return to the program execution, the effects of the ret
instruction have to be emulated. This is performed by setting
the instruction pointer register to the last value on the stack.
This value is popped from the stack using the VirtualStack
component.

When the program tries to call a function that has not been
implemented in the emulator, it is still safely caught and the
emulator tries to return 0 to the program. It also notifies the
user, so that critical missing functions can be identified and
implemented. The OS component implementations are respon-
sible for registering the available system functions so that
they can be linked when loading the program. Implemented
functions include malloc, sqrt, sin, cos, acos, exp, memcpy,
strlen, strncmp, etc. The address of a special exit system
function is always placed at the top of the program stack
before calling program functions so that the function return
can be caught and the emulation exited.

Since the programs used here are compiled as libraries, the
last step to load the program is to call the initialization function
of the library. This is the init function in Linux and the entry
point defined in the PE header for Windows.

3) Function calling: The last role of the OS implementa-
tion is defining the function calling standard used under the
specific system. This is done through the implementation of a
FunctionCalling interface. This interface allows the calling of
functions without knowing how the arguments are passed to
the emulation or how the return value is read.

Both Linux and Windows operating systems and compilers
use a variant of the FastCall standard. It works by passing the
arguments using different registers depending on their type and
order. Under Windows, the arguments of a function call are

passed left to right in the RCX, RDX, R8, R9, R. . . registers
for all integer or pointer types. Under Linux, they are passed
inside the RDI, RSI, RDX and RCX registers. The return value
is passed through the RAX register.

For floating-point values, the arguments and return value are
passed in the XMMn registers. The number n goes from 0 to
15 for modern processors, and they are used in this order for
arguments left to right. In the case of a floating-point return
value, it is always placed in the XMM0 register.

E. Execution time models

The main goal of the emulator is to have a time model
for programs running inside the simulated world. A Com-
puterTime component is responsible for collecting the timing
evaluations from the different emulation components. It is
configured with the CPU and memory clock frequencies (in
Hertz) and provides conversion function from CPU or memory
cycle counts to time. This component manages two time-
precisions: picoseconds and milliseconds. The picosecond
precision is needed because the duration of CPU cycles are
in the nanosecond range (ex: 1s / 1 GHz = 1ns). To keep
this cycle-time precise when using integers, it is computed
in picoseconds. The component proposes three methods to
add time to its internal clock: add cpu cycles(cycle count),
add memory cycles(cycle count) and add pico time(time).
The first two use the defined CPU and memory frequency
to convert the cycle count to time. In all cases, it converts the
picosecond time to microseconds, which is relevant for the
simulation and keeps the modulo for precision.

The time evaluation is possible through the registering of
monitoring hooks in the Unicorn engine. The engine will then
call these hooks while emulating the program. There are hooks
for instructions, memory, and errors. The instruction hooks
get called before every single instruction execution and the
memory hooks get called for every memory read or write
operation caused by an instruction. The error hooks can be
used to gather information on what caused an error inside the
emulation.

1) Processor time: The evaluation of the time used by
instructions directly (not counting the memory access time)
is performed by the CodeDecoder component. It is called
by the monitoring hook for every instruction and reads the
bytes of the instruction from the engine’s memory. It then
uses the ZyDis library, which can decode x86 (and AMD64)
instructions, to get an enumeration value for every type of
instruction. This value is used directly to lookup a CPU cycle
count in a time table. This cycle count is cycle added to the
ComputerTime component.

The time table currently contains values from a benchmark
of an Intel Skylake processor. This table can be changed to
represent other CPUs. This model does not currently take
into account the instruction context. Some of the tables found
specify different tick counts depending on the size or type of
data the instruction works on. It can be different if the data is
constant and coded into the instruction, or if the register used
is bigger or a floating point register.



instruction memory data memory

L1 instruction cache L1 data cache

L2 cache

L3 cache

MemoryTime

Fig. 3. Example of a cache configuration with multiple layers.

2) Memory time: Another big factor for code execution
time is the interaction time with the computer’s Random-
Access Memory (RAM). This happens when instructions
themselves are read by the control unit of the CPU and when
instructions read or write data from or to memory. These cases
are managed by the MemoryModel component. It is called by
the monitoring hook for every memory access and for every
instruction execution (because the Unicorn engine does not
call the memory hooks for the reading of instructions).

The time it takes to write and read the main memory is
encapsulated in a MemoryTime component. This component is
configured with the number of memory cycles necessary for
reading and writing 8 bytes of memory (a memory “block”).

With current CPU technology, memory times are an order
of magnitude larger than CPU times. This is why caching is
standard. It allows data to be stored in a smaller but faster
memory so that the CPU does not have to wait for data to
arrive from main memory. Since caching has a large influence
on computing times, the MemoryModel contains a configurable
way of setting up cache layers.

Instead of directly asking the MemoryTime component for
the necessary time, the MemoryModel uses two MemoryAc-
cessInterfaces. One for data memory access (data memory)
and one for instruction reading (instruction memory). The
MemoryAccessInterface is implemented by the MemoryTime
component and also by any optional cache model. The two
interfaces to data and instruction memory can then represent
a stack of cache layers finishing with the MemoryTime layer.
This is shown with the example configuration in Fig. 3.

Each layer is queried for the time it takes to read or write
a certain address. The cache layers can then evaluate if the
address represents a cache hit or miss. In the latter case, it can
add the time from the next layer, and so on until eventually
hitting the MemoryTime layer.

The current cache implementation has a configurable size
and its reading and writing times are expressed in CPU
cycle counts. It implements the FIFO Replacement Policy. A
Replacement Policy is the algorithm used to choose which
entries are replaced in the cache when it is full and a new
entry has to be added. Other policies such as the Least Recently
Used policy or more complex heuristic based policies could be
implemented and placed in the MemoryAccessInterface stack.

3) Operating system time: Currently, calls to system func-
tions are not covered by the time evaluation since they are
performed outside the emulation environment. Therefore an
approximation time is currently added by every external sys-
tem call. These time models provide an approximation for the
execution time of software that can be used in the overarching
simulation (R2). Alternatively, the operating system functions
would have to be integrated into the emulation through an
operating system image. This would require relocations, inter-
program linking and proper setup of such an image.

F. EmbeddedMontiArc and MontiSim Integration

The MontiSim simulator uses the created emulator to sim-
ulate the software of its autonomous vehicles. The emulator
is given an EMA model to load and the desired configuration
for the computer time models. The simulator can the set and
read the ports of the model depending on the internal vehicle
communications. The execution time can then be read from the
emulator in order to delay the emulated software accordingly.

The software components of a simulated vehicle are set up
in an E/E infrastructure simulation. This E/E simulation works
with the Discrete-Event paradigm, where processes are not
updated on a tick basis but their effects and durations are
saved in events. A Discrete-Event Simulator then processes
events ordered by their finish time.

Since the emulated EMA models work on a cycle basis,
their execution can be performed in one block. The evaluated
execution time is then used to create a discrete event that
will trigger the outputs of the model in the future of the
simulation. This discrete-event system allows the modeling of
different E/E components inside the vehicle, such as different
computers, different buses, the sensors and actuators of the
vehicle, etc. An example of the generation of a discrete event
by the Hardware Emulator is shown in Fig. 4. It also shows
the interaction between the tick-based part of the simulator
(physics simulation) and the discrete-event system. For a given
simulation tick, the simulator generates events that represent
new physical data (such as the sensor data). The discrete-event
simulator then processes events until the next tick time, on
which this cycle continues.

In order to dynamically integrate EMA models in the
simulator, an Adapter generator was created that can use the
EMA language parser and generator to generate its own set
of functions depending on the model. The generated Adapter
contains a set of predefined functions that list the number,
name, and type of input and output ports of the EMA model.
It is compiled as a layer over the generated model code. This
allows the simulator to dynamically discover the ports of the
model. From their name and type, the simulator can deduce
the name and signature of the generated function that is used
to interact with the ports of the model. This dynamic approach
allows the model to define the communication channels it uses
inside the simulation dynamically. All the required functions
(including the port discovery functions) of the model can be
looked up in the symbol hashmap of the emulator that is filled
by the program loaders.



E/E Sim

update

simulator ticks emulated time

tic
k

input event

evaluated time

register output event

emulate

Bus

delay event

trigger output event

discrete
event

simulation

discrete
event

simulation

discrete
event

simulation

bus
emulation

emulate
autopilot

cycle

read
inputs

write
outputs

Hardware
Emulator

Autopilot
emulation

Fig. 4. Discrete-event interaction of the Hardware Emulator. Calls in blue
are related to Discrete Events.

0 20 40 60

50

100

Simulated time [s]

A
ut

op
ilo

t
ex

ec
ut

io
n

tim
e
[m

s]

Basic
Slow CPU
No cache

Fig. 5. Execution times of an autopilot cycle for different hardware config-
urations.

V. EVALUATION

The following evaluation will show the simulation results
for a series of virtual computer hardware configurations. The
simulation setup is using a part of the Aachen city exported
from OpenStreetMap. The simulated vehicle uses a mass point
physical simulation and is set up with a simple autopilot
(the emulated software). The different hardware configurations
tested are shown in Table I. The tuple of numbers for the cache
settings represent the cache’s size, read and write time (in this
order). The read and write times are expressed in CPU cycle
count. The evaluation of the single instructions takes values
from a table of an Intel Skylake benchmark.

One of the metrics exported from the simulation is shown in
Fig. 5. It is the evaluated software execution time for one cycle

Data and
Name CPU Memory instruction L2 cache

frequency frequency L1 cache
Basic 10MHz 1MHz 128,1,2 1024,10,15
Slow CPU 1.5MHz 150KHz 128,1,2 1024,10,15
No cache 10MHz 1MHz — —

TABLE I
HARDWARE CONFIGURATIONS.

0 20 40 60

−2

0

2

Simulated time [s]

D
ev

ia
tio

n
fr

om
pl

an
ne

d
tr

aj
ec

to
ry

[m
]

Basic
Slow CPU

Fig. 6. Deviation from planned trajectory for different hardware speeds.
(Positive deviation is left of the trajectory.)

of the autopilot: reading the inputs, executing the logic and
writing the outputs. The other exported metric is the deviation
of the car to the planned trajectory (shown in Fig. 6). This
represents how well the autopilot can control the car and
follow its target trajectory. The planned trajectory is a set
of line segments that go from the location of the car to its
target coordinates. The deviation is then computed by taking
the orthogonal distance to the closest trajectory segment. The
sign of the deviation represents the side of the trajectory on
which the vehicle is.

Fig. 5 shows the influence of the hardware configuration
on the evaluated time. The difference between the Basic and
Slow CPU simulations is due to slower CPU and memory
frequencies. The difference between Basic and No cache is
only due to the presence or absence of a cache model for
the CPU. Fig. 6 shows the influence of hardware to slow for
the software on the controlling capabilities of the autopilot
software. In the Slow CPU simulation, the autopilot has bigger
difficulties to follow the planned trajectory and frequently falls
into an oscillation pattern around the desired trajectory.

VI. RELATED WORK

There are basically two different approaches to simulating
an embedded system: One can either extend an existing
general purpose simulator or create a new simulator from
scratch. In case of cooperating embedded systems, e.g., in
Internet of Things (IoT) or cooperative driving applications,
extending the discrete-event network simulator ns-3 [9] is a
popular option because of its large number of network and
mobility models. However, this advantage comes at the cost
of needing to provide a simulator-specific implementation.



iTETRIS [10] is an Intelligent Transportation System
(ITS) simulator that combines ns-3 with the traffic simulator
SUMO [11]. A disadvantage of this framework is, however,
that ITS applications have to be implemented using the ITS
simulator of iTETRIS. Therefore, a second implementation
would be required if the application should be deployed on real
hardware. The Direct Code Execution (DCE) [12] extension
of ns-3 allows simulating the execution of binaries compiled
for Linux. Similar to our approach, DCE replaces function
calls that depend on the host machine by simulator-specific
code. CoWS [1] uses DCE to simulate code written for
the Wireless Open Access Research Platform (WARP) [13].
CoWS replaces hardware-specific function calls of WARP
devices, such as setting the transmission frequency, by ns-
3 compliant implementations using the mechanisms offered
by DCE. The fact that CoWS uses almost the same code
that would be executed on the target platform allows the
developer to analyze the code using standard debugging tools
like gdb that might not be available on the target platform.
Disadvantages of this method are that the executable has to
be linked specifically for ns-3 and that it requires a small
number of modifications to the code to return the control
to the simulator during endless loops. A major difference to
our approach is that our approach allows using unmodified
libraries in the simulator by using an emulator instead of
simulating the behavior of the hardware. Alternatively, it is
also possible to use an architecture description language to
generate code targeted at ns-3 [14]. However, as the generated
code relies on ns-3 specific interfaces, it is not executable on
real hardware without adapting the code generator.

Instruction Set Simulations (ISSs) allow simulating embed-
ded systems at the level of single CPU instructions. However,
this creates a considerable overhead [1]. In contrast, EMA
focuses on modeling the software architecture of embedded
systems. To nevertheless provide results close to the results
achieved on real hardware, we allow specifying certain param-
eters of the hardware that allow us to abstract from specific
hardware components while still achieving comparable results.

[15] describes how to create software architectures that
combine models with different Models of Computation
(MoCs). This is achieved by keeping the MoC consistent on
each hierarchy level. Different hierarchy levels, i.e., nested
components, may, however, use different MoCs. Similarly,
we separate the autopilot emulation from the discrete-event
simulation and only exchange the results of the computation
with the simulation.

VII. CONCLUSION

In this paper we proposed a reproducible hardware emula-
tion approach making the simulation of model execution more
realistic. The approach analyzes a compiled model and predicts
its runtime for the desired architecture based on the generated
assembler code. It is based on the Unicorn emulation engine
and considers the execution duration of the instructions as well
as memory access and caching.

We integrated the emulator into a vehicle simulator to
simulate the delays of an autonomous driving controller. In
a trajectory following experiment, we showed how different
hardware configurations affect the trajectory driven by the
simulated vehicle. Obviously, a model execution simulation is
indispensable for the assessment and validation of embedded
system models. Future work comprises experimentation and
evaluation with more complex E/E infrastructures and com-
parisons with real hardware.

REFERENCES

[1] Martin Serror, Jörg Christian Kirchhof, Mirko Stoffers, Klaus Wehrle,
and James Gross. Code-transparent Discrete Event Simulation for Time-
accurate Wireless Prototyping. In Conference on Principles of Advanced
Discrete Simulation, SIGSIM-PADS ’17, pages 161–172, New York, NY,
USA, 2017. ACM.

[2] Evgeny Kusmenko, Alexander Roth, Bernhard Rumpe, and Michael
von Wenckstern. Modeling Architectures of Cyber-Physical Systems.
In European Conference on Modelling Foundations and Applications
(ECMFA’17), LNCS 10376, pages 34–50. Springer, July 2017.

[3] Evgeny Kusmenko, Bernhard Rumpe, Sascha Schneiders, and Michael
von Wenckstern. Highly-Optimizing and Multi-Target Compiler for
Embedded System Models: C++ Compiler Toolchain for the Component
and Connector Language EmbeddedMontiArc. In Conference on Model
Driven Engineering Languages and Systems (MODELS’18), pages 447
– 457. ACM, October 2018.

[4] Filippo Grazioli, Evgeny Kusmenko, Alexander Roth, Bernhard Rumpe,
and Michael von Wenckstern. Simulation Framework for Executing
Component and Connector Models of Self-Driving Vehicles. In Pro-
ceedings of MODELS 2017. Workshop EXE, CEUR 2019, September
2017.

[5] Christian Frohn, Petyo Ilov, Stefan Kriebel, Evgeny Kusmenko, Bern-
hard Rumpe, and Alexander Ryndin. Distributed Simulation of Cooper-
atively Interacting Vehicles. In International Conference on Intelligent
Transportation Systems (ITSC’18), pages 596–601. IEEE, 2018.

[6] Mordechai Haklay and Patrick Weber. OpenStreetMap: User-Generated
Street Maps. IEEE Pervasive Computing, 7(4):12–18, 2008.

[7] Nguyen Anh Quynh and Dang Hoang Vu. Unicorn-the ultimate cpu
emulator, 2015.

[8] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator. In
USENIX Annual Technical Conference, FREENIX Track, volume 41,
page 46, 2005.

[9] The ns-3 Consortium. ns-3 Discrete Event Network Simulator. [Online]
https://www.nsnam.org.

[10] Jérôme Härri, Pasquale Cataldi, Daniel Krajzewicz, Robbin J. Blokpoel,
Yoann Lopez, Jeremie Leguay, Christian Bonnet, and Laura Bieker.
Modeling and Simulating ITS Applications with iTETRIS. In Proceed-
ings of the 6th ACM Workshop on Performance Monitoring and Mea-
surement of Heterogeneous Wireless and Wired Networks, PM2HW2N
’11, pages 33–40, New York, NY, USA, 2011. ACM.

[11] Daniel Krajzewicz, Jakob Erdmann, Michael Behrisch, and Laura
Bieker. Recent Development and Applications of SUMO - Simulation
of Urban MObility. International Journal On Advances in Systems and
Measurements, 5(3&4):128–138, December 2012.

[12] Mathieu Lacage. Experimentation Tools for Networking Research. PhD
thesis, Université de Nice-Sophia Antipolis, 2010.

[13] Rice University and Mango Communications. The WARP Project.
[Online] https://www.warpproject.org/trac.

[14] Mihal Brumbulli and Emmanuel Gaudin. Towards Model-Driven
Simulation of the Internet of Things. In Michel-Alexandre Cardin,
Saik Hay Fong, Daniel Krob, Pao Chuen Lui, and Yang How Tan,
editors, Complex Systems Design & Management Asia, pages 17–29,
Cham, 2016. Springer International Publishing.

[15] Johan Eker, Jörn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu,
Jozsef Ludvig, Stephen Neuendorffer, Sonia Sachs, and Yuhong Xiong.
Taming Heterogeneity—The Ptolemy Approach. Proceedings of the
IEEE, 91(1):127–144, Jan 2003.


