
An experience report
Steffen Zschaler, with thanks to Erwan Bousse and Tanja Meyerhöfer
October 15th, 2018



Executable Domain-Specific Modelling Languages

Abstract 
Syntax

Concrete 
Syntax

Semantic
Domain

Parser/Unparser (Xtext)
Graphical Editor (Sirius)
Projection (MPS)

Language Semantics
à debuggers, simulator, analysers, …

15/10/2018 (c) Steffen Zschaler, King's College London 2



Language workbenches

Language workbenches generate tool support from (declarative) descriptions of software languages
• Editors, analysers, simulators, debuggers, …

• Many exist for syntax part, much fewer for semantics
• Here I build on GEMOC Studio
• Built in Rennes/Toulouse
• Generic description of language using:
• Abstract syntax: EMF
• Graphical concrete syntax: Sirius
• Operational Semantics: a range of imperative options: Kermeta, fUML, …

15/10/2018 (c) Steffen Zschaler, King's College London 3



Goal

Add support for operational semantics specified using graph-transformation system (GTS)

• Why?
• Declarative description of semantics
• Enables reasoning (e.g., about concurrency)
• Enables robust composition and weaving to extend the language semantics and combine 

different languages
• Not an interpreter, but a semantics
• Implicit scheduling 

• Why GEMOC Studio?
• Claims to be easily extensible with new semantics formalisms
• Wanted to evaluate this claim

15/10/2018 (c) Steffen Zschaler, King's College London 4



5

Core Idea

Standard GEMOC

Henshin rules 
for operational 
semantics

15/10/2018 (c) Steffen Zschaler, King's College London



Demonstration: The Banking Example



So what’s involved?

Execution Engine
• Implement interpretation of semantics
• Currently based on sequential execution engine
• At each step randomly pick an available match

• Need to “fake” semantics operation names for GEMOC
• Using rule names
• “Flat” semantics

ModelExecutionContext
• To remove dependency on Melange

Launch Configuration
• To wire all of the above for execution
• Needed to copy existing code because not accessible for reuse

15/10/2018 (c) Steffen Zschaler, King's College London 7



Demonstration: The Production Line Model



Concurrency

Concurrency is currently badly supported
• Using sequential execution engine
• Need to make a choice of the next step at each point rather than giving the choice to the user

• Should really build on concurrent execution engine
• BUT: could not figure out how to extend this; it seems much less modular
• HELP!

GTSs have the potential of making concurrent semantics much easier
• No need for explicit concurrency model à could potentially be inferred from semantics and 

model

15/10/2018 (c) Steffen Zschaler, King's College London 9



Conclusions

Two contributions:

1. Support for GTS-based semantics in GEMOC Studio
2. Initial evaluation of extensibility of GEMOC Studio

Future work:

• Proper support for concurrency
• Support for time
• Connection to our previous composition work

15/10/2018 (c) Steffen Zschaler, King's College London 10



Questions?
szschaler@acm.org
www.steffen-zschaler.de
With thanks to Erwan Bousse and Tanja Meyerhöfer


