
Department	of	Mathematics	and	Computer	Science	

Mark	van	den	Brand	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	

Overview	of	presentation	

•  Introduction	

•  Observations	
•  Model	driven	software	engineering	
•  Legacy	and	model	driven	software	engineering	
•  Legacy	challenges	

•  Conclusions	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	2	

Introduction	

Joint	work	with	
•  Önder	Babur	
•  Josh	Mengerink	
•  Ramon	Schiffelers	
•  Alexander	Serebrenik	

	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	3	

Introduction	

1992	-	1997:	Assistant	professor	at	UvA	(NL)	
1997	-	2005:	Senior	researcher	at	CWI	(NL)	
2006	-	now:	Full	professor	TU/e	(NL):	
•  Chair	of	Software	Engineering	and	Technology	(SET)	
•  SET	focuses	on	Model	Driven	Software	Engineering:	

•  Domain	specific	language	design	
•  Analysis	of	models,	meta-models,	and	model	transformations	
•  Modeling	of	Functional	Safety	in	Automotive	Domain	

•  Industry	motivated	research	
	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	4	

Introduction	

The	research	area	of	the	SET	group	is	software	engineering,	
and	model-based	software	engineering	in	particular	
•  Given	the	high-tech	software-intensive	industry	in	the	Eindhoven	

region,	we	consider	time-	and	cost-efficient	development	of	high-
quality	software	as	crucial	

	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	5	

Introduction	

SET	focuses	research-wise	on	two	subareas:		
•  meta-modeling/domain	specific	languages	including	semantics	of	

domain	specific	languages,	language	workbenches,	and	verification	of	
model	transformations;	

•  Data	Science	applied	to	software	engineering	focusing	on	software	
evolution	of	(multi-lingual)	systems,	including	advanced	metrics,	
repository	mining,	and	social	aspects	of	software	development	to	
extract	“relevant”	information	of	existing	software	

	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	6	

Introduction	

Software	Engineering	and	Technology	(SET)	group	has	strong	
cooperation	with	High	Tech	industrial	partners	via	research	
projects:	
•  Océ	(document	handling)	
•  VanDerLande	Industries	(luggage	handling,	warehouses)	
•  Philips	Healthcare	(medical	equipment:	MRI,	CT,	X-ray,	invasive	

surgery)	
•  ASML	(lithography	systems)	
•  DAF	((long	distance	heavy)	trucks)	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	7	

Observations	

•  Software	quality	research	is	vital	for	modern	society	
•  Software	is	omnipresent,	hardly	any	modern	device	or	equipment	is	

without	software	
•  Software	connects	people	and	devices/equipment	with	ever	increasing	

complexity	
•  Our	society	depends	on	software	and	improves	the	quality	of	living,	

among	others	in	the	following	domains:		
•  medical	
•  automotive	
•  domestic	
•  social	media	

	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	8	

Observations	

Software	has	become	leading	in	high-tech	equipment:	
•  without	software	no	production	
	

Increase	in	the	amount	of	software	has	raised:	
•  correctness	of	the	software	
•  need	for	efficient	software	development	
•  awareness	with	respect	to	legacy	

	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	9	

Observations	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	10	

Observations	

Software	evolves,	continuous	growth	in:	
•  size	of	software	(amount	of	LOC)	
•  complexity	of	software	
•  features	in	(software)	systems	
•  costs	to	build	software	
•  number	of	languages	in	software	systems	
	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	11	

Observations	

High	tech	industry	in	the	Eindhoven	region	has	embraced	
model	driven	software	development	
•  To	tackle	the	ever	increasing	amount	of	software	

•  In-house	DSLs	are	developed,	using	EMF	and	MPS,	and	applied	
•  UML	and	SysML	are	used	for	modeling	behavior	

•  To	ensure	correctness	and	robustness	via	(model)	checking:	
•  ASD	(Verum)	is	intensively	used	to	define	interfaces	and	protocols	

•  To	facilitate	opportunities	for	virtualization	(aka	digital	twin)	
•  To	be	afraid	to	miss	the	boat	
	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	12	

Model	driven	software	engineering	

Models	are	common	practice	when	designing	mechatronic	
systems	
•  hardware	design	
•  electronic	design	
•  physical	models	
•  Matlab/Simulink	models	
•  software	models	
Software	has	proven	to	be	crucial	but	at	the	same	time	a	
challenge	
•  model	driven	engineering	has	become	very	popular	
	 Model	Driven	Software	Engineering	creates	tomorrow's	legacy	13	

Model	driven	software	engineering	

Model	driven	engineering		
•  considers	models	as	first	class	citizens	
•  increases	level	of	abstraction	because	of	the	use	of	models	
•  offers	the	choice	between	general	purpose	modeling	languages	or	

domain	specific	languages	
•  the	first	may	lead	to	a	vendor	lock-in	
•  the	second	may	involve	a	huge	investment	in	language	design,	

implementation,	and	tooling	
	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	14	

Model	driven	software	engineering	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	15	

Requirements	 Product	

Model	driven	software	engineering	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	16	

Requirements	 Product	

Specification	
In	terms	of	problem	domain	

	
Expressive	for	concise	

specification	of	large	multi-
disciplinary	systems	

	
‘Look-and-feel’	primarily	

determined	by	domain	experts	
	

Crucial	for	adoption	

Model	driven	software	engineering	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	17	

Requirements	 Product	

Models

A
pp

lic
at

io
n

M
ap

pi
ng

P
la

tfo
rmLogical Platform

PGAPPPGSGPGWB

Physical Platform

Transducer

Deployment

Schedule

Platform Mapping

DSLs

Model	driven	software	engineering	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	18	

Requirements	 Product	

Models

A
pp

lic
at

io
n

M
ap

pi
ng

P
la

tfo
rmLogical Platform

PGAPPPGSGPGWB

Physical Platform

Transducer

Deployment

Schedule

Platform Mapping

DSLs

Deadlocks	
	

Safety	
	

Performance	
	

Throughput	

Model	driven	software	engineering	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	19	

Requirements	 Product	

Models

A
pp

lic
at

io
n

M
ap

pi
ng

P
la

tfo
rmLogical Platform

PGAPPPGSGPGWB

Physical Platform

Transducer

Deployment

Schedule

Platform Mapping

DSLs

Deadlocks	
	

Safety	
	

Performance	
	

Throughput	

synthesis	
Property	
preserving	

	
Automated	

Model	driven	software	engineering	

Models

A
pp

lic
at

io
n

M
ap

pi
ng

P
la

tfo
rmLogical Platform

PGAPPPGSGPGWB

Physical Platform

Transducer

Deployment

Schedule

Platform Mapping

DSLs

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	20	

(Domain)	languages	

Models	

Model	driven	software	engineering	

Models

A
pp

lic
at

io
n

M
ap

pi
ng

P
la

tfo
rmLogical Platform

PGAPPPGSGPGWB

Physical Platform

Transducer

Deployment

Schedule

Platform Mapping

DSLs

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	21	

Domain	models	
(specification)	

Aspect	models	
(analysis)	

Transformations	

Model	driven	software	engineering	

A	few	(research/engineering)	challenges:	
•  Identification	of	common	semantic	concepts	in	a	certain	domain:	

•  High-Tech	Industry	
•  real-time,	state	machines,	supervisory	control,	material	flow	(paper,	wafers),	etc.	

•  Capturing	these	concepts	in	domain	specific	languages	
•  Quality	and	correctness	of	model	transformations	wrt		

•  property	preservation	
•  underlying	semantics	

•  Modularity	of	meta-models	and	composition	semantic	building	blocks	
•  Evolution	of	meta-models	and	co-evolution	of	models	
•  Mixing	multiple	domain	specific	languages	
	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	22	

Model	driven	software	engineering	

What	is	a	Domain	Specific	Language	(DSL)?	
•  A	DSL	is	a	formal,	procesable	language	targeting	at	a	specific	aspect	of	a	

system	
•  Its	semantics,	flexibility	and	notation	is	designed	in	order	to	support	

working	with	that	aspect	as	efficiently	as	possible	
•  “A	language	that	offers,	through	appropriate	notations	and	

abstractions,	expressive		power	focused	on,	and	usually	restricted	to,	a	
particular	problem	domain”		

	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	23	

Model	driven	software	engineering	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	24	

DSL	meta-model	

• 
co
de

	g
en

er
at
io
n	

• 
m
od

el
	tr
an
sf
or
m
at
io
n	

Execution	platform		
(C,	Java	code)	

Model	driven	software	engineering	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	25	

Model	driven	software	engineering	

Domain	specific	languages	offer	
•  Reduction	of	development	time	via	increase	of	abstraction	
•  Increase	of	robustness	via	verification	of	models	and	model	

transformations	
	
However,		
•  efficient	design	of	domain	specific	languages	and	corresponding	tooling	

has	to	be	implemented	and	maintained	as	well	
	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	26	

Model	driven	software	engineering	

Modeling	in	practice	
•  Used	across	many	disciplines	
•  Abstraction	mechanism,	used	for		

•  communication,	guidance	
•  sketch,	blueprint,	prototype	
•  analysis,	verification,	optimization	
•  automated	production	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	27	

Model	driven	software	engineering	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	28	

Models	
•  UML	

Model	driven	software	engineering	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	29	

Models	
•  BPM	

Model	driven	software	engineering	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	30	

Models	
•  Simulink	

Legacy	and	model	driven	software	engineering		

•  Number	of	modeling	languages,	including	Domain	Specific	
Languages,	is	growing	

•  Number	of	models	created	via	these	modeling	languages	is	
also	growing	

•  What	are	the	consequences?	But	first	some	figures!	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	31	

Legacy	and	model	driven	software	engineering	

Expanding	the	universe	of	modeling	
•  Widespread	adoption	of	modeling,	industrial	cases	

à	Too	many	modeling	artifacts	(models,	transformations,	…)	
à  Possibly	heterogeneous	as	well	(software	+	hardware,	software	+	business,	

…)	

à  Impossible	to	manage	them	ad-hoc	

	
	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	32	

Legacy	and	model	driven	software	engineering	

Expanding	the	universe	of	modeling	
•  Widespread	adoption	of	modeling,	industrial	cases	

à  Too	many	modeling	artifacts	(models,	transformations,	…)	

•  Examples	(software	domain)		
•  Repositories	

•  ATL	Zoo:	~300	meta-models	
•  SPLOT:	>900	feature	models,	growing	
•  GitHub	Ecore	crawl:	~7k	meta-models	
•  Lindholmen	UML	dataset:~90k	models!	

	
	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	33	

Legacy	and	model	driven	software	engineering	

Expanding	the	universe	of	modeling	
•  Ecore	meta-models	in	GitHub	

	
	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	34	

0

10000

20000

20
05

20
10

20
15

year

cr

ea
te

d
on

 e
ac

h
ye

ar

0

10000

20000

30000

20
05

20
10

20
15

year

co

m
m

its
 p

er
 y

ea
r

Legacy	and	model	driven	software	engineering	

Domain	clustering	analysis	results	on	the	ATL	Meta-model	Zoo	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	35	

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

32 33
99

94 95
98

96 97
10
2

10
1

10
0

10
3

91 92
87

90
88 89

4 7
8

1
2 3

6
15 16 17 18 22 19

20 21
13 14
11 12

9 10
51

44
85 86

5 93
53

50
49 52

82
10
6

10
7

60 64
55

62
61 63
73

72
71 74

65 67 6
9

68
66 70

30
29 31

23
83 84

75 76
80

81
78 79

41
46

43
36 42

37
40

38 39
26 27

24
25 28

35
48

47 77
34 45

57
58

56 59
54

10
4

10
5

Number	=	index	of	meta-model	
Height	=	distance	between	meta-models	

Legacy	and	model	driven	software	engineering	

Domain	clustering	analysis	results	on	the	ATL	Meta-model	Zoo	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	36	

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

32 33
99

94 95
98

96 97
10
2

10
1

10
0

10
3

91 92
87

90
88 89

4 7
8

1
2 3

6
15 16 17 18 22 19

20 21
13 14
11 12

9 10
51

44
85 86

5 93
53

50
49 52

82
10
6

10
7

60 64
55

62
61 63
73

72
71 74

65 67 6
9

68
66 70

30
29 31

23
83 84

75 76
80

81
78 79

41
46

43
36 42

37
40

38 39
26 27

24
25 28

35
48

47 77
34 45

57
58

56 59
54

10
4

10
5

Petri	net	

State	
machine	Bibliography	

Conference	
management	

Word	

Excel	

Legacy	and	model	driven	software	engineering	

Expanding	the	universe	of	modeling	
•  Widespread	adoption	of	modeling,	industrial	cases	

à  Too	many	modeling	artifacts	(models,	transformations,	…)	

•  Examples	(software	domain)		
•  Industrial	case	1:	just	one	of	the	DSL	eco-systems	of	an	OEM-er:	

•  >20	DSLs	
•  >40	meta-models		
•  >90	QVTo	files,	>90k	LOC,	>600	rules/helpers	
•  >5000	models	

	
	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	37	

Legacy	and	model	driven	software	engineering	

Expanding	the	universe	of	modeling	
•  Widespread	adoption	of	modeling,	industrial	cases	

à  Too	many	modeling	artifacts	(models,	transformations,	…)	

•  Examples	(software	domain)		
•  Industrial	case	2:	6	projects	(~eco-systems)	of	a	supplier,	some	figures:	

•  19	DSLs,	43	meta-models	
•  1670	models	
•  QVTo:	107	files,	34k	LOC,	80	transformations,	979	mappings,	1872	helper/queries	
•  Xpand/Xtend:	368	files,	67k	LOC,	6	transformations,	501	templates,	2004	queries	
•  Acceleo:	251	files,	41k	LOC,	1298	templates,	1377	queries	

	
	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	38	

Legacy	and	model	driven	software	engineering	

Expanding	the	universe	of	modeling	
•  Widespread	adoption	of	modeling,	industrial	cases	

à  Too	many	modeling	artifacts	(models,	transformations,	…)	

•  Examples	(software	domain)	
•  What	about	evolution?		

•  Industrial	case	1:	>	50K	artifacts	
•  Industrial	case	2:	10K	artifacts	

•  What	kind	of	evolution?	
	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	39	

Legacy	and	model	driven	software	engineering	

Statistical	Analysis	of	MOdelS	(SAMOS)	
•  SAMOS	is	developed	by	Önder	Babur	
•  SAMOS	is	capable	of:			

•  feature	extraction	(fragmentation)	
•  n-grams,	subtrees,	metrics,	…	

•  feature	comparison	
•  natural	language	processing	
•  elaborate	weight	and	comparison	schemes	

•  Vector	Space	Model	computation	
•  distance	measures,	statistical	analyses	in	R	

	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	40	

Legacy	and	model	driven	software	engineering	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	41	

Setofmodels$

Metamodel$

Features$

NLP$

Tokeniza8on$

$Matching$scheme$
Weigh8ng$scheme$

VSM$

Distance$
calcula8on$Clustering$Dendrogram$

Automated$extrac8on$
Inferred$
clusters$

Extrac8on$$
scheme$

Filtering$

Synonym$
detec8on$

…$

Data$selec8on,$
filtering$
Clone$

detec8on$
…$

Classifica8on$

Analysis$

…$

Repository$
management$

Domain$
analysis$

…$

NJgrams$
Metrics$

…$

Manual$
inspec8on$

Legacy	and	model	driven	software	engineering	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	42	

Cross-DSL	analysis:	~100	meta-models	for	4	DSL	eco	systems	
0.
0

0.
2

0.
4

0.
6

0.
8 64

79 98
69 72

38
68 73

65
58 91

66 74
44 49

53
78 83

47 48
46 59 1
3

70
67 71

32
95

42 82
41 81

92 93
37 99

39
96

88
52 97

34
40 80

50
45 63

35 60
43

55
54 56

36 51
57

12 14
4 5

19
11 25

61 62
33

7 21 16 27
1 2

15 26
18 30

28 31
23

9
10 24 6 20

3
17 29

77
8 22

87
90 94

76
85 86

89
75 84

legend:
DSL 1
DSL 2
DSL 3
DSL 4

Legacy	and	model	driven	software	engineering	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	43	

Cross-DSL	analysis:	~100	meta-models	for	4	DSL	eco	systems	
0.
0

0.
2

0.
4

0.
6

0.
8 64

79 98
69 72

38
68 73

65
58 91

66 74
44 49

53
78 83

47 48
46 59 1
3

70
67 71

32
95

42 82
41 81

92 93
37 99

39
96

88
52 97

34
40 80

50
45 63

35 60
43

55
54 56

36 51
57

12 14
4 5

19
11 25

61 62
33

7 21 16 27
1 2

15 26
18 30

28 31
23

9
10 24 6 20

3
17 29

77
8 22

87
90 94

76
85 86

89
75 84

legend:
DSL 1
DSL 2
DSL 3
DSL 4

Conceptual overview?

Legacy	and	model	driven	software	engineering	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	44	

Cross-DSL	analysis:	~100	meta-models	for	4	DSL	eco	systems	
0.
0

0.
2

0.
4

0.
6

0.
8 64

79 98
69 72

38
68 73

65
58 91

66 74
44 49

53
78 83

47 48
46 59 1
3

70
67 71

32
95

42 82
41 81

92 93
37 99

39
96

88
52 97

34
40 80

50
45 63

35 60
43

55
54 56

36 51
57

12 14
4 5

19
11 25

61 62
33

7 21 16 27
1 2

15 26
18 30

28 31
23

9
10 24 6 20

3
17 29

77
8 22

87
90 94

76
85 86

89
75 84

legend:
DSL 1
DSL 2
DSL 3
DSL 4

Copy-pasted at some point + evolved in time?

Legacy	and	model	driven	software	engineering	

An	OEM-er	in	the	Eindhoven	region	has	
•  22	DSLs	built	using	EMF	+	OCL	
•  95	model	transformations	
•  5500	models	created	using	the	meta-models	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	45	

Legacy	and	model	driven	software	engineering	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	46	

Legacy	and	model	driven	software	engineering	

What	are	legacy	systems?	
•  Systems	developed	for	a	specific	client	that	have	been	in	service	for	a	

long-time	
•  Many	of	these	systems	were	developed	years	ago	using	obsolete	

technologies	
•  They	are	likely	to	be	business	critical	systems	required	for	normal	

operation	of	a	business	
	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	47	

Legacy	and	model	driven	software	engineering	

DSLs	evolve																																																																				
																																																																																														±5000	of	models	and	growing	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	48	

.

0"

10"

20"

30"

40"

50"

60"

70"

744" 895" 1552"1762"1789"1808"2682"4098"4143"4495"4545"8643"

basics&
Annota1ons"

Parameters"

Opera1ons"

References"

EnumLiterals"

EEnums"

AAributes"

Classes"
0"

10"

20"

30"

40"

50"

60"

70"

747" 770" 921" 1538"1788"2637"3443"3508"4129"4653"6439"8643"8845"

pgapp$
Annota1ons"

Parameters"

Opera1ons"

References"

EnumLiterals"

EEnums"

AAributes"

Classes"

0"

10"

20"

30"

40"

50"

60"

10
04
"
10
07
"
13
41
"
14
17
"
21
29
"
21
66
"
34
23
"
41
15
"
41
31
"
42
76
"
42
88
"
56
44
"
69
44
"
69
92
"
73
92
"
76
19
"

ds_schedule)
Annota1ons"

Parameters"

Opera1ons"

References"

EnumLiterals"

EEnums"

AAributes"

Classes"
0"

20"

40"

60"

80"

100"

120"

140"

17
95
"

18
33
"

22
41
"

26
50
"

30
68
"

30
69
"

31
59
"

33
63
"

33
85
"

44
88
"

64
43
"

76
51
"

77
15
"

80
18
"

81
12
"

83
74
"

89
99
"

physicalPla*orm.
Annota1ons"

Parameters"

Opera1ons"

References"

EnumLiterals"

EEnums"

AAributes"

Classes"

11Revision nr.

#D
SL

 e
le

m
en

ts

Legacy	and	model	driven	software	engineering	

Manually	maintaining	models	in	response	to	DSL	evolution	is	NOT	feasible!	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	49	

.

0"

10"

20"

30"

40"

50"

60"

70"

744" 895" 1552"1762"1789"1808"2682"4098"4143"4495"4545"8643"

basics&
Annota1ons"

Parameters"

Opera1ons"

References"

EnumLiterals"

EEnums"

AAributes"

Classes"
0"

10"

20"

30"

40"

50"

60"

70"

747" 770" 921" 1538"1788"2637"3443"3508"4129"4653"6439"8643"8845"

pgapp$
Annota1ons"

Parameters"

Opera1ons"

References"

EnumLiterals"

EEnums"

AAributes"

Classes"

0"

10"

20"

30"

40"

50"

60"

10
04
"
10
07
"
13
41
"
14
17
"
21
29
"
21
66
"
34
23
"
41
15
"
41
31
"
42
76
"
42
88
"
56
44
"
69
44
"
69
92
"
73
92
"
76
19
"

ds_schedule)
Annota1ons"

Parameters"

Opera1ons"

References"

EnumLiterals"

EEnums"

AAributes"

Classes"
0"

20"

40"

60"

80"

100"

120"

140"

17
95
"

18
33
"

22
41
"

26
50
"

30
68
"

30
69
"

31
59
"

33
63
"

33
85
"

44
88
"

64
43
"

76
51
"

77
15
"

80
18
"

81
12
"

83
74
"

89
99
"

physicalPla*orm.
Annota1ons"

Parameters"

Opera1ons"

References"

EnumLiterals"

EEnums"

AAributes"

Classes"

11Revision nr.

#D
SL

 e
le

m
en

ts

Legacy	and	model	driven	software	engineering	

M
version

1

DSL
version

1

DSL
version

2

M
version

2

Obtain Evolution
Specification

Evolve

Evolution DSL

Derive Co-evolution
Specification

Co-evolve

Co-evolution
DSL

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	50	

DSL Model Artifact Action

user interaction
conformance
Input/output

Legacy	and	model	driven	software	engineering	

M
version

1

DSL
version

1

DSL
version

2

M
version

2

Obtain Evolution
Specification

Evolve

Evolution DSL

Derive Co-evolution
Specification

Co-evolve

Co-evolution
DSL

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	51	

DSL Model Artifact Action

user interaction
conformance
Input/output

Legacy	and	model	driven	software	engineering	

M
version

1

DSL
version

1

DSL
version

2

M
version

2

Obtain Evolution
Specification

Evolve

Evolution DSL

Derive Co-evolution
Specification

Co-evolve

Co-evolution
DSL

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	52	

DSL Model Artifact Action

user interaction
conformance
Input/output

DSL
version

2

M
version

1

Legacy	and	model	driven	software	engineering	

M
version

1

DSL
version

1

DSL
version

2

M
version

2

Obtain Evolution
Specification

Evolve

Evolution DSL

Derive Co-evolution
Specification

Co-evolve

Co-evolution
DSL

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	53	

DSL Model Artifact Action

user interaction
conformance
Input/output

Legacy	and	model	driven	software	engineering	

M
version

1

DSL
version

1

DSL
version

2

M
version

2

Obtain Evolution
Specification

Evolve

Evolution DSL

Derive Co-evolution
Specification

Co-evolve

Co-evolution
DSL

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	54	

DSL Model Artifact Action

user interaction
conformance
Input/output Manual	=	

Costly	

Legacy	and	model	driven	software	engineering	

M
version

1

DSL
version

1

DSL
version

2

M
version

2

Obtain Evolution
Specification

Evolve

Evolution DSL

Derive Co-evolution
Specification

Co-evolve

Co-evolution
DSL

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	55	

DSL Model Artifact Action

user interaction
conformance
Input/output

Tedious	&	
error	prone	

Legacy	and	model	driven	software	engineering	

M
version

1

DSL
version

1

DSL
version

2

M
version

2

Obtain Evolution
Specification

Evolve

Evolution DSL

Derive Co-evolution
Specification

Co-evolve

Co-evolution
DSL

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	56	

DSL Model Artifact Action

user interaction
conformance
Input/output

Legacy	and	model	driven	software	engineering	

Co-evolution	problem	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	57	

Model
version

1

DSL
version

1

DSL
version

2

Model
version

1

DSL
version

2

Model
version

2

evolution

co-evolution

conformancechangeDSL Model

Legacy	and	model	driven	software	engineering	

Models	evolve	but	meta-models	evolve	as	well:	
•  Abstract	syntax	
•  Constraints	(static	semantics)	

•  Semantics	
	
	
•  Semantic	domain	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	58	

D
SL

 E
co

sy
st

em
 V

er
si

on
 1

D
SL

 E
co

sy
st

em
 V

er
si

on
 2

Metamodel X
version 1
()

Metamodel Y
version 1
()

XtoY version 1
()

XtoY version 2
()

Metamodel X
version 1
()

Metamodel Y
version 2
()

SD evolution

S evolution

M+ evolution M+
2M+

1

SD1 SD2

S1 S2

Metamodel Transformation input/output

}

D
SL

 E
co

sy
st

em
 V

er
si

on
 1

D
SL

 E
co

sy
st

em
 V

er
si

on
 2

Metamodel X
version 1
()

Metamodel Y
version 1
()

XtoY version 1
()

XtoY version 2
()

Metamodel X
version 1
()

Metamodel Y
version 2
()

SD evolution

S evolution

M+ evolution M+
2M+

1

SD1 SD2

S1 S2

Metamodel Transformation input/output

Legacy	and	model	driven	software	engineering	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	59	

Evolution	on	all	levels	

D
SL

 E
co

sy
st

em
 V

er
si

on
 1

D
SL

 E
co

sy
st

em
 V

er
si

on
 2

Metamodel X
version 1
()

Metamodel Y
version 1
()

XtoY version 1
()

XtoY version 2
()

Metamodel X
version 1
()

Metamodel Y
version 2
()

SD evolution

S evolution

M+ evolution M+
2M+

1

SD1 SD2

S1 S2

Metamodel Transformation input/output

Legacy	and	model	driven	software	engineering	
D

SL
 E

co
sy

st
em

 V
er

si
on

 1

D
SL

 E
co

sy
st

em
 V

er
si

on
 2

Metamodel X
version 1
()

Metamodel Y
version 1
()

XtoY version 1
()

Metamodel X
version 1
()

M+ evolution M+
2M+

1

SD1 SD2

S1

Metamodel Transformation input/output

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	60	

D
SL

 E
co

sy
st

em
 V

er
si

on
 1

D
SL

 E
co

sy
st

em
 V

er
si

on
 2

Metamodel X
version 1
()

Metamodel Y
version 1
()

XtoY version 1
()

XtoY version 2
()S evolution

M+
2M+

1

SD1 SD2

S1 S2

Metamodel Transformation input/output

D
SL

 E
co

sy
st

em
 V

er
si

on
 1

D
SL

 E
co

sy
st

em
 V

er
si

on
 2

Metamodel X
version 1
()

Metamodel Y
version 1
()

XtoY version 1
()

XtoY version 2
()

Metamodel X
version 1
()

Metamodel Y
version 2
()

SD evolution

S evolution

M+ evolution M+
2M+

1

SD1 SD2

S1 S2

Metamodel Transformation input/output

Syntax	only	 Semantics	only	 Multi	level	

Which	of	these	evolution	patterns	occur	in	practice?	

Which	of	these	evolution	patterns	occur	in	practice?	
	
•  Industrial	case	study	

•  22	DSLs	
•  95	model-to-model	transformations	
•  >5500	models	

•  Look	at	subsequent	versions	in	repository	
	

Legacy	and	model	driven	software	engineering	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	61	

D
SL

 E
co

sy
st

em
 V

er
si

on
 1

D
SL

 E
co

sy
st

em
 V

er
si

on
 2

Metamodel X
version 1
()

Metamodel Y
version 1
()

XtoY version 1
()

XtoY version 2
()

Metamodel X
version 1
()

Metamodel Y
version 2
()

SD evolution

S evolution

M+ evolution M+
2M+

1

SD1 SD2

S1 S2

Metamodel Transformation input/output

Code	 Syntax	
evolves	

Semantics	
evolves	

Semantic	domain		
evolves	

E000	 No	 No	 No	

E001	 No	 No	 Yes	

E010	 No	 Yes	 No	

E100	 Yes	 No	 No	

E011	 No	 Yes	 Yes	

E101	 Yes	 No	 Yes	

E110	 Yes	 Yes	 No	

E111	 Yes	 Yes	 Yes	

Legacy	and	model	driven	software	engineering	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	62	

D
SL

 E
co

sy
st

em
 V

er
si

on
 1

D
SL

 E
co

sy
st

em
 V

er
si

on
 2

Metamodel X
version 1
()

Metamodel Y
version 1
()

XtoY version 1
()

XtoY version 2
()

Metamodel X
version 1
()

Metamodel Y
version 2
()

SD evolution

S evolution

M+ evolution M+
2M+

1

SD1 SD2

S1 S2

Metamodel Transformation input/output

Legacy	and	model	driven	software	engineering	

E011,	example:	
•  Take	snapshots	at	time	t=1	and	t=2	
•  For	every	possible	triple		

(X	:	MM,		Y	:	M2M-trans,			Z	:	MM)	
•  Does	it	hold	that:	

•  Y	:	X	→	Z	
•  X	does	not	evolve	from	t=1	to	t=2	
•  Y	evolves	from	t=1	to	t=2	
•  Z	evolves	from	t=1	to	t=2	

	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	63	

D
SL

 E
co

sy
st

em
 V

er
si

on
 1

D
SL

 E
co

sy
st

em
 V

er
si

on
 2

Metamodel X
version 1
()

Metamodel Y
version 1
()

XtoY version 1
()

XtoY version 2
()

Metamodel Y
version 2
()

SD evolution

S evolution

M+
1

SD1 SD2

S1 S2

Metamodel Transformation input/output

Code	 Syntax	
evolves	

Semantics	
evolves	

Semantic	domain		
evolves	

#	occurrences	

E001	 No	 No	 Yes	 344	

E010	 No	 Yes	 No	 865	

E100	 Yes	 No	 No	 84	

E011	 No	 Yes	 Yes	 368	

E101	 Yes	 No	 Yes	 0	

E110	 Yes	 Yes	 No	 86	

E111	 Yes	 Yes	 Yes	 292	

Legacy	and	model	driven	software	engineering	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	64	

Code	 Description	 #	occurrences	

E010	 Only	semantic	change	 865	

E011	 Only	syntax	change	 368	

E001	 Only	semantic	domain	change	 344	

E111	 Full	evolution	 292	

E110	 Different	syntax	with	different	semantics	
expressed	in	the	same	semantic	domain	

86	

E100	 Same	syntax	gets	new	semantics	in	a	different	
semantic	domain	

84	

E101	 Syntax	and	semantics	domain	are	changed,	but	no	
new	semantics	is	provided	

0	

Legacy	and	model	driven	software	engineering	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	65	

Code	 Description	 #	occurrences	

E010	 Only	semantic	change	 865	

E011	 Only	syntax	change	 368	

E001	 Only	semantic	domain	change	 344	

E111	 Full	evolution	 292	

E110	 Different	syntax	with	different	semantics	expressed	
in	the	same	semantic	domain	

86	

E100	 Same	syntax	gets	new	semantics	in	a	different	
semantic	domain	

84	

E101	 Syntax	and	semantics	domain	are	changed,	but	no	
new	semantics	is	provided	

0	

Legacy	and	model	driven	software	engineering	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	66	

}	77%	

Legacy	challenges	

The	following	challenges	can	be	observed:	
•  The	tooling	to	create	and	use	DSLs	is	far	from	mature.	
•  The	creation	of	a	DSL	involves	understanding	of	the	domain	for	which	

the	languages	are	created.	
•  The	increased	level	of	abstraction	and	introduction	of	domain	concepts	

makes	the	models	harder	to	understand	and	maintain.		
•  The	interactions	between	software	models	and		models	from	other	

(system)	engineering	domains,	e.g.	describing	physical	behavior,	are	
becoming	more	and	more	important.	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	67	

Legacy	challenges	

The	tooling	to	create	and	use	DSLs	is	far	from	mature	
•  unstable	
•  badly	documented	
•  deprecates	rapidly	
	
Industry	uses		
•  standard	tools	(QVTo)	with	large	user	communities	
•  tools	developed	and	maintained	by	companies,	e.g.	MPS,	Sirius,	

Acceleo	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	68	

Legacy	challenges	

The	creation	of	a	DSL	involves	understanding	of	the	domain	
for	which	the	languages	are	created	
•  having	the	capability	of	translating	this	knowledge	to	concepts	at	the	

right	level	of	abstraction.	

Industry	applies	different	DSL	development	strategies:	
•  outsourcing	to	research	institutes.	
•  team	of	software	language	engineers	combined	with	domain	experts	
•  in	house	prototyping	and	transfer	to	supplier	for	maturing	and	

maintenance	
	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	69	

Legacy	challenges	

The	increased	level	of	abstraction	and	introduction	of	domain	
concepts	makes	the	models	harder	to	understand	and	
maintain.		
•  The	use	of	DSLs	involves	also	a	risk,	if	the	developer(s)	of	a	DSL	leaves	

the	company	then	the	maintenance	of	the	DSL	may	be	jeopardized.		
•  The	number	of	developers	that	are	able	to	understand	and	maintain	

DSLs	is	low;	the	number	of	developers	understanding	general	purpose	
languages,	e.g.	C,	will	always	be	higher.	

Industry	asks	for	courses	on	modeling	and	meta-modeling	
	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	70	

Legacy	challenges	

The	interactions	between	software	models	and	models	from	
other	(system)	engineering	domains	has	become	important.	
•  For	describing	physical	behavior	
•  For	enabling	virtualization	
•  For	facilitating	system	engineering,	moving	from	mono-

disciplinary	to	multi-disciplinary	modeling	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	71	

Conclusions	

•  Research	on	model	driven	software	engineering	should	
•  move	away	from	just	focusing	on	tooling		
•  start	focusing	on	proper	methodologies	to	extract	domain	concepts	in	order	

to	create	usable	DSLs.		
•  deal	with	evolutionary	aspects	of	DSLs	and	created	models		
•  work	on	stabilizing	the	tooling	needed	to	create	languages	and	corresponding	

models,	ensuring	consistency		
•  between	languages	and	between	models,	and		
•  between	languages	and	models.		

If	we	are	able	to	make	this	happen	then	we	might	have	a	
silver	bullet	after	all	and	the	promised	increase	in	quality	and	
productivity	will	be	realized.	

Model	Driven	Software	Engineering	creates	tomorrow's	legacy	72	

