
Model Driven Software Engineering creates tomorrow’s legacy
Mark G.J. van den Brand

Eindhoven University of Technology
Eindhoven, The Netherlands

m.g.j.v.d.brand@tue.nl

ABSTRACT
Software is everywhere we go. Among others, it powers the devices
we use in our daily life, it channels our social interactions via social
media, it enables our medical care. With the increasing number of
applications, the amount of software is exponentially increasing,
which challenges the way we develop and maintain our software
efficiently and effectively.

The software engineering (research) community is fully aware
of these challenges and attempts to tackle these by introducing
new development techniques, such as Agile software development,
test-driven software development and model driven software tech-
nology. The latter advocates the use of models and domain specific
languages (DSLs) to speed up the development of software, to in-
crease understandability and quality of the resulting software.

Modeling and modeling languages are common practice in other
engineering domains, such as mechanical engineering. Modeling in
software development has accelerated with the launch of Unified
Modeling Language (UML). The use of multiple modeling languages
in UML has led to the development of Meta Object Facility (MOF)
and its derivative EclipseModeling Framework (EMF). Model driven
software engineering advocates the use of small languages that are
domain specific, provide a higher level of abstraction and facilitate
code generation. UML already offered the possibility to create do-
main specific extensions via profiles. MOF and specifically EMF
have given rise to the creation of small languages using the Eclipse
environment. EMF and the tooling using EMF, such as Xtext, ATL,
QVTo, ETL, etc., has led to an acceleration of the development of
domain specific languages.

The following challenges can be observed with respect to this
development.

(1) The tooling used to create and use DSLs is far from mature,
is unstable, and gets rapidly deprecated. There is still a lot
of effort needed to improve the existing tooling.

(2) The creation of a DSL involves understanding of the domain
for which the languages is created and having the capability
of translating this knowledge to concepts at the right level
of abstraction.

(3) The increased level of abstraction and introduction of do-
main concepts makes the models harder to understand and
maintain. The use of DSLs involves also a risk, if the devel-
oper(s) of a DSL leaves the company then the maintenance of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Conference’17, July 2017, Washington, DC, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the DSL may be jeopardized. The number of developers that
are able to understand and maintain DSLs is low; the number
of developers understanding general purpose languages, e.g.
C, will always be higher.

(4) The interactions between software models and models from
other (system) engineering domains, e.g. describing physical
behavior, are becoming more and more important.

The (high-tech) industry has adopted model driven software
engineering and started introducing DSLs. These DSLs are proto-
typical, because capturing and defining domain concepts as well
as language development is new for them. Before the DSLs stabi-
lizes, tens and sometimes even hundreds of models may already be
created. These models have to be migrated and can not be thrown
away, if the DSLs are adapted. These languages and corresponding
models will become legacy if we do not act by means of developing
proper development methodologies and tooling to support analy-
sis of languages and models and the evolution of both languages
and models. So, both language and domain are in state of flux and
have to co-evolve, both on the syntactic but definitively also on the
semantic level, but this is hard and difficult work. We do not have
the tools for this and if we do not act now, we will have the same
legacy as we have software from a code perspective

One can wonder whether model driven software engineering is
indeed the next silver bullet to transform software development
or rather a silver-painted egg that when being fired creates a big
mess. Research on model driven techniques should move away
from just focusing on tooling, although that still work has to be
done to make the tools more robust and usable, but start focusing
on proper methodologies to extract domain concepts in order to
create usable DSLs. It should deal with evolutionary aspects of DSLs
and created models and work on stabilizing the tooling needed to
create languages and corresponding models, ensuring consistency
between languages and between models, and between languages
and models. These are just a few of the challenges that we are
facing. If we are able to make this happen then we might have
a silver bullet after all and the promised increase in quality and
productivity can be realized.
ACM Reference Format:
Mark G.J. van den Brand. 2018. Model Driven Software Engineering creates
tomorrow’s legacy. In Proceedings of ACM Conference (Conference’17). ACM,
New York, NY, USA, 1 page. https://doi.org/10.1145/nnnnnnn.nnnnnnn

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

	Abstract

