
Compositional

Model Based

Software Development

Prof. Dr. Bernhard Rumpe
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

Prof. Dr. B. Rumpe

Software Engineering
Department

RWTH Aachen

Seite 2

Our Working Groups and Topics

Automotive / Robotics

− Autonomous driving

− Functional architecture

− Variability & product lines

− Requirements engineering

− Simulation

− Robotics

Energy

− Modeling of facilities and
buildings

− Formal planning of functions

− Data management

− Automated analyses

− Quality assurance

− Monitoring

Cloud Services

− Service platforms

− Migration into the cloud

− Evolution of services

− Internet of Services

− Internet of Things

− Tool development

− Tool-Framework MontiCore

− UML, SysML, Architecture DL

− Domain-specific languages (DSL)

− Generation, synthesis

− Testing, Analysis, verification

− Software architecture, evolution

− Agile methods

Model-based Software Development

Prof. Dr. B. Rumpe

Software Engineering
Department

RWTH Aachen

Seite 3

Generative Software Engineering

� Generative software engineering (GSE) is a

• Method that uses generators to efficiently generate software
systems or parts of software systems from models written in
UML or a DSL in order to increase quality and decrease
development time.

� If DSLs are used, domain experts can model, understand, validate,
and optimize the software system directly.

� UML models or DSLs are used to model certain aspects of a
software system in an intuitive and concise manner.

� Of-the-shelf or hand-made generators process the models to
generate production and test code.

Prof. Dr. B. Rumpe

Software Engineering
Department

RWTH Aachen

Seite 4

DSL-driven Development

� Domain Specific Modeling Languages (DSML)
as a central notation in the development process

DSML models

static analysis

rapid prototyping

code generationautomated tests

refactoring/
transformation

documentation

• DSMLs serve as central notation for development of software

• a DSML can be programming, test, or modeling language

Prof. Dr. B. Rumpe

Software Engineering
Department

RWTH Aachen

Seite 5

Core Elements of an Agile Modeling Method

� Incremental modeling

� Modeling tests

� Automatic analysis: Types, dataflow, control flow, ...

� Code generation for system and tests from compact models

� Small increments

� Intensive simulation with customer participation for feedback

� Refactoring for incremental extension and optimization

� Common ownership of models

� ...

This approach uses elements of agile methods based on the UML
notation

Prof. Dr. B. Rumpe

Software Engineering
Department

RWTH Aachen

Seite 6

Constructive use of Models for Coding and Testing:
Usage of UML-Diagrams

consistency
analyser

„smells“ &
errors

statecharts
class
diagrams C++,

Java …

parameterized
code
generator

system

deployment
diagram

sequence
diagrams

object
diagrams

__:

__:

__:

OCL

test code
generator

tests

see: B. Rumpe: Agile Modellierung mit UML, Springer Verlag 2011

Prof. Dr. B. Rumpe

Software Engineering
Department

RWTH Aachen

Seite 7

� Test-Infrastructure needs simulation of its context:

� context can be: geographical, sociological, etc.

� Simulation helps to understand complexity

Model-based Simulation for SE

statechartsclass
diagrams

C++,
Java …

system

deployment
diagram

sequence
diagrams

object
diagrams

__:

__:

__:

OCL

tests

DSLsDSLs

Prof. Dr. B. Rumpe

Software Engineering
Department

RWTH Aachen

Seite 8

View on Model Driven Architecture (MDA)

application classes define data structures

system complete and running system

technical class diagram
adaptation, extension, technical designT

T T T

T T T

T

+ behavior for technical classes

code generation +
integration with manually written code

state machines describe
states and behavior

use cases and scenarios:
sequence diagrams describe users viewpoint

Requirements

Prof. Dr. B. Rumpe

Software Engineering
Department

RWTH Aachen

Seite 9

Problems of Model Driven Architecture

system

T

T T T

T T T

T

Requirements

• No reuse

• Tool chain too deep
• No efficient tools
• Tracing problems
• Evolution is awkward

• Lot of information missing, e.g.,
- design rationale
- non-functional reqs.

• “Agile” development is not possible

• SE-Models are not integrated with other
Engineering Models (spatial, biological, ...)

Prof. Dr. B. Rumpe

Software Engineering
Department

RWTH Aachen

Seite 10

Model composition helps…

� Modularity and composition are essential for:

• distributed development

• reuse from libraries

• Efficient tools (generation, analysis)

� The principle: independently developed artifacts A, B
with explicit interface S

� composition:
C = A ⊕ B

connects A with B at interface S
and encapsulates internals

� The principle is well known

• e.g. classes in object orientation

� But: How does composition of models look like?

⊕

⊕

⊕

Prof. Dr. B. Rumpe

Software Engineering
Department

RWTH Aachen

Seite 11

Model composition

� Dimensions of composition :

• Syntactic: How does A ⊕ B look like?

• Semantical: What does A ⊕ B mean?

• Methodical: How to develop A as well as B?

• Organisational: Can we develop A and B in parallel?

• Technical: Can I compile incrementally & individually:
means: is there a binding technique for
Code(A) ⊕ Code(B)?

⊕

⊕

⊕

Prof. Dr. B. Rumpe

Software Engineering
Department

RWTH Aachen

Seite 12

Model composition

� Model composition needs

• a notion of interfaces for models

• organization of models in artifacts (files)

• incremental, individual analyses and generation

� but not really a syntactically executed composition.

� Hypothesis:
Compositional modularity for models is essential
for the success of model based software development.

⊕

⊕

⊕

Prof. Dr. B. Rumpe

Software Engineering
Department

RWTH Aachen

Seite 13

Example: class diagram + OCL

� OCL relies on CD

� Interface is:

• Person ! Kind: class + Signature

• age ! Kind: attribute + Type

� Checking correctness early is desirable!

� OCL can also be combined with :

• Java, Object diagrams, Statecharts, …

context Person p inv:

p.age >= 0

CD OCL

Person

int age

Prof. Dr. B. Rumpe

Software Engineering
Department

RWTH Aachen

Seite 14

Example: Statechart & Java

� Statechart uses Java

� Interface:

• login ! in Statechart: Kind: Message

• in Java: Kind: Methodname + Signature „ ()“

� Languages have different interpretations of shared elements!

� � translation is necessary!

NotLoggedIn LoggedIn

login / print(„Hello“)

Statechart public class Person{

public void login() {

…

}

}

Java

Prof. Dr. B. Rumpe

Software Engineering
Department

RWTH Aachen

Seite 15

Example: Statechart & Java

� Interface:

• login ! in Statechart: Kind: message

• in Java: Kind: class + (adapted name)

• NotLoggedIn ! in Statechart: Kind: state

• in Java: Kind: constant

� Transformation necessary and dependent on the context

LoggedIn

login / print(„Hello“)

Statechart public class Person{

public

handle(LoginMessage m) { … }

enum State { NotLoggedIn … }

}

Java

NotLoggedIn

Prof. Dr. B. Rumpe

Software Engineering
Department

RWTH Aachen

Seite 16

Example: Statechart & Java

� Statechart contains foreign languages

• OCL for the preconditions

• Java-statements for actions

• Import-interface from CD, Java, …
(while the actual source should be transparent)

� Combined use of models typically also means language embedding

LoggedIn

[n in { p.name | p in Person && not p.isBanned} && valid(n,pw)]

login(n,pw) / print(„Hello“)

Statechart

NotLoggedIn

CD

Person

String name

bool isBanned

Prof. Dr. B. Rumpe

Software Engineering
Department

RWTH Aachen

Seite 17

Interfaces/Namespaces

� Hypothesis:

• Interfaces between models are defined using names

� Interfaces are imported, exported, passed-through (and local)

� There are variants of exports,

• e.g. for subclasses, global (see e.g. Java)

� „Kinds“ of named elements:

• state, message, method, class, activity, etc.

• Each kind has its own “form” of interface

• e.g. state has a name

• e.g. method has parameters

• e.g. class has methods + attributes, …

Prof. Dr. B. Rumpe

Software Engineering
Department

RWTH Aachen

Seite 18

Interfaces/Namespaces

� Composition of heterogeneous languages:

• E.g. Statemachines know “state”; CD’s or Java’ doesn’t

� Transformation between interfaces adapts

• kind & signature; sometimes also name

• E.g. mapping states to constants

� Variants of transformations are possible

• E.g. mapping states to classes (see GOF’s state pattern)

� Special cases may be complex, e.g.

• Messages may map to action sequences

• Timing and computations models come into play, …

Prof. Dr. B. Rumpe

Software Engineering
Department

RWTH Aachen

Seite 19

Signatures (interfaces) for models

� A signature for a model, allows us to

• check compatibility against signatures

• and ensure the composition of derived code to be correct.

� This allows to delay the composition: „Late Binding“

signature

code

model

checked against

linked together

(generate)

(extract)

Prof. Dr. B. Rumpe

Software Engineering
Department

RWTH Aachen

Seite 20

Language composition vs. model composition

� In agile DSL development we reuse sub-languages
and combine languages.

� Consequence:

• We do not only compose artifacts (files), but
also sub-artifacts

• E.g. a Statemachine embodies Java statements
& OCL conditions within the same artifact.
They share e.g. local variables.

� Can we apply composition here as well?

• Can we reuse independently developed code generation
within the same artifact?

� Hypothesis:

• Model composition and language composition are pretty
related.

Prof. Dr. B. Rumpe

Software Engineering
Department

RWTH Aachen

Seite 21

Language & tooling workbench MontiCore

� Definition of modular language fragments
� Interfaces between models/language fragments

• Name spaces, typing (~ Java, UML)
• „kinds“ + signatures

� Assistance for analysis
� Assistance for transformations
� Pretty printing, editors (graphical + textual)

� Composition of languages:
• independent language development
• composition of languages and tools
• Language extension
• Language inheritance (allows replacement)

� Quick definition of domain specific languages (DSLs)
• by reusing existing languages
• variability in syntax, context conditions, generation, semantics

Prof. Dr. B. Rumpe

Software Engineering
Department

RWTH Aachen

Seite 22

UML/P language tooling @ MontiCore

Language
developer

Tool
customizer

Modeler

Programmer
(Model-level)

Tool
developer

Models

Code

System

Runtime
Environment

Programmer
(System-level)

Context
Conditions

Settings

Profile

Templates

Generator

Settings

Calculators

Grammars

UMLPTool

Check
Workflow

Symbol
tables

Codegen
Workflow

Language
Processing

Framework

Prof. Dr. B. Rumpe

Software Engineering
Department

RWTH Aachen

Seite 23

Application: Data-Explorer (Dex)

� Goal: generate a complete application

• basically from a single class diagram

� using an intelligent generator

� GWT-based GUI, search functionality, cloud-based persistence,
authentication, roles, rights, …

� easy extensibility for functionality, GUI, etc.

classdiagram CampusMgmt {

abstract class Person {

+ String name;

+ String firstname;

+ String email;

+ int age;

}

class Teacher extends Person;

association Person -> Address [*];

// ...

}

CD generator

Prof. Dr. B. Rumpe

Software Engineering
Department

RWTH Aachen

Seite 24

MontiCore:
Selected languages

� MontiCore
• Bootstrapping

� UML
• Class diagrams
• Object diagrams
• Statecharts
• Activity diagrams
• Sequence diagrams
• OCL

� MontiArc
• Architectural models /

ADL, function nets
• + automata + Java + views

� Java
• Java 5.0 grammar

� C++
• Ansi-C++ grammar

� MontiCore transformations
• Pattern matching
• Extended by Java

� FeatureDSL
• Feature diagram & config.

� AutosarDSL
• Components, deployment,

interfaces

� Flight control: constraint language

� Building facility specification

� Curriculum

� Cloud Service Configurator
• Management of Services

x x

x

x x

x

Prof. Dr. B. Rumpe

Software Engineering
Department

RWTH Aachen

Seite 25

Status of compositional MBSE

Model- and language composition is key to

successful use of MBSE

� Model composition ++

� Language composition ++

� Variability for languages & usages ++

� Modular language definition ++

� Modular analysis ++

� Modular generation open

� Modular verification open

� Tooling +

� Model evolution / transformation (+)

� Language library (+)

� Transfer to industry (+/-)

⊕

Prof. Dr. B. Rumpe

Software Engineering
Department

RWTH Aachen

Seite 26

Thanks for listening.

Questions?

Prof. Dr. B. Rumpe

Software Engineering
Department

RWTH Aachen

Seite 27

Transformations in MBSE

Generation

allows for Evolution

M SalesProduction

tests

MSalesProduction

Transformation

Models / (UML/DSL)

system

tests

system

Sales

� Repeatable generation is necessary

� (no one-shots, no manual adaptation of generated code)

Prof. Dr. B. Rumpe

Software Engineering
Department

RWTH Aachen

Seite 28

Transformations

� ... strongly depend on the language

• primitive transformations (add, remove, rename) don‘t help

• Semantically relevant transformations needed

� Examples:

• Split a state in Statecharts

• Extend an interfaces in an architecture

• Move an attribute between classes

• Introduce new class in hierarchy

University Staff

Professor Assistant Secretary

University Staff

Professor

SecretaryScientific Staff

Assistant

Prof. Dr. B. Rumpe

Software Engineering
Department

RWTH Aachen

Seite 29

Transformations using concrete Textual Syntax

Given a language L we derive (:

� transformation language for T(L)

� transformation engine for T(L)

T(L) understandable for modelers

� It uses concrete syntax!

Explaning the transformation rule:

� pattern to be matched

� and replacement parts: [[old :- new]]
(where “old” is matched and then
replaced by “new”)

� $outer, $inner are matching variables
(here bound to state names, but could be
any nonterminal)

� Control language for composing
transformations

� Negative patterns allowed

� Java for calculations embedded

� …

// transformation rule:
// redirect transitions to initial substates

state $outer {

state $inner [[<< initial >> :-]];

}

// transition

A -> [[$outer :- $inner]];

statechart S {

state A;

state B { state Sub1, Sub2;

state Sub3; }

A -> Sub1; // transition

A -> Sub2; // transition}

statechart S {

state A;

state B { state Sub1, Sub2 <<initial>>;

state Sub3; }

A -> B; // transition

}

Prof. Dr. B. Rumpe

Software Engineering
Department

RWTH Aachen

Seite 30

Steps of Code Generation

� AST = abstract syntax tree of model

Model
AST

Model
AST

Text in
DSL A

Text-to-Model-
Transformation

Model-to-Model-
Transformations

Model-to-Text
Transformation

...

conforms to conforms to

...

e.g., optimizations or
reduction to simpler form

DSL ZDSL A

Text in
DSL Z

Parse,
context check

pretty print,
or templates

transform

Tool

Prof. Dr. B. Rumpe

Software Engineering
Department

RWTH Aachen

Seite 31

Prof. Dr. B. Rumpe

Software Engineering
Department

RWTH Aachen

Seite 32

screenshot of the editor-plugin for Eclipse with auto-completion

