Digital Twin-based Anomaly Detection in Cyber-physical Systems (ATTAIN)

Qinghua Xu

Dept. of Engineering Complex Software Systems

Simula Fornebu

Inria-Simula Workshop March 16, 2021

*Q. Xu, S. Ali, and T. Yue "Digital Twin-based Anomaly Detection in Cyber-physical Systems.", Accepted at ICST 2021.

PART 01 Background

PART 03 Experiment

CONTENTS

PART 04 Future Work

Broader Threats

Background T

Threat Model & Task Definition

Find anomaly in real time in CPS

Background Example

Time	FIT101	LIT101	MV101	P101	P102	Label	
10:00:00	2.43	522.84	2	2	1	Normal	
10:00:01	2.45	522.88	2	2	1	Normal	
	•••			•••			
10:29:13	2.44	816.84	2	1	1	Normal	
10:29:14	2.49	817.67	2	1	1	Attack	
10:29:15	2.54	817.94	2	1		Attack	
				••••			
10:44:53	6e-4	869.72	1	2	1	Attack	

simula

• **Digital twin model** is a virtual replica or live model of CPS

• **Digital twin capability** is the functionality of a digital twin

Battle Of The Attack Detection Algorithms (BATADAL)

Water Distribution (WADI)

Secure Water Treatment (SWaT)

RQ1 How effective is our anomaly detector as compared to the literature?

	SWaT			WADI			BATADAL		
Model	Р	R	F1	Р	R	F1	Р	R	F1
LSTM-CUSUM	0.907	0.677	0.775	0.614	0.697	0.659	0.657	0.721	0.687
MAD-GAN	0.961	0.942	0.951	0.432	0.952	0.594	0.529	0.962	0.683
ATTAIN (without signal)	0.922	0.954	0.937	0.524	0.782	0.627	0.553	0.774	0.645
ATTAIN	0.959	0.992	0.975	0.665	0.844	0.744	0.722	0.763	0.742

ATTAIN outperforms LSTM-CUSUM and MAD-GAN for almost all metrics on all the three datasets, with particularly good performance in terms of precision.

RQ2 How realistic is our digital twin model?

- State prediction: Hamming distance converges after training for 80,000 samples
- **Outlier Detection:** Accuracy on SWaT, WADI, and BATADAL are 0.82, 0.69, and 0.74

RQ3 Is using DT effective in detecting anomalies as compared to not using it?

	SWaT			WADI			BATADAL		
Model	Р	R	F1	Р	R	F1	Р	R	F1
LSTM-CUSUM	0.907	0.677	0.775	0.614	0.697	0.659	0.657	0.721	0.687
MAD-GAN	0.961	0.942	0.951	0.432	0.952	0.594	0.529	0.962	0.683
ATTAIN (without signal)	0.922	0.954	0.937	0.524	0.782	0.627	0.553	0.774	0.645
ATTAIN	0.959	0.992	0.975	0.665	0.844	0.744	0.722	0.763	0.742

ATTAIN with signals from the digital twin model improves the F1 score by more than 10% on the SWaT and BATADAL datasets when compared with ATTAIN without signals

Full scale CPS

Experiments on realworld, full-scale CPS Experiments on more challenging situations, e.g. detecting attacks against multiple CPS

Multiple CPS

Experiments on other security tasks, e.g. misconfiguration detection.

Other tasks

