Testing Learning Capabilities of Intelligent Collaborative Robots

Mohit Kumar Ahuja PhD Student Simula Research Laboratory



In this presentation, I will explain what we do with collaborative robots at Simula.

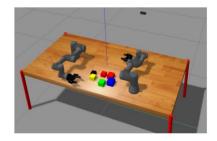
What are Collaborative Robots?

DeepRegression: Regression Training of Deep Learning Systems using Reduced Dataset

simula

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14 34 30 1000 23 6 1 -600 3 30 35 -600 0 10 -400 -400 0 10 -400 -400 0 11 -200 -400 4 15 -00 -0 36 14 -00 -0	Casa 0 0 0 27 3 Casa 1 0 0 0 27 3 Casa 1 0 0 0 0 0 0 Casa 2 0 4 0 10 Casa 3 0 1 28 1 Casa 3 0 1 28 1 Casa 5 4 1 0 11 Casa 6 4 1 0 11 Casa 6 4 1 0 11 Casa 6 1 1 12 1 Casa 6 1 12 1 Casa 7 1 12 12 1	Ion Matrix 0 0 1 4 0 2 - 1000 0 0 1 4 0 2 - - 1000 1 0 2 5 0 2 -			
DATASET	MNIST	F-MNIST	CIFAR-10			
FULL DATASET			4170.82			
(in Seconds)	99.78	113.89	4170.82			
	99.78 44.74	113.89 60.69	4170.82 2475			
(in Seconds) DEEPREGRESSION TRAIN TIME						

Why is testing required for AI-driven robots


Need for Testing Learning Capabilities of Cobots.

- o Are Cobots 100% accurate/reliable to solve AI-driven vision tasks?
- o Is it safe to deploy AI-Driven robots in collaboration with humans?
- o Are there strong testing techniques available to test the learned abilities of robots/cobots?

Metamorphic Testing of Robots (Metero)

Visualization in RVIZ

2

For years, robots used to work in cages

What are Collaborative Robots?

Humans can work with these robots safely.

But other than their safety aspect, these robots does not have any level of intelligence

How can we make these collaborative robots intelligent?

Ultrasonic Sensor

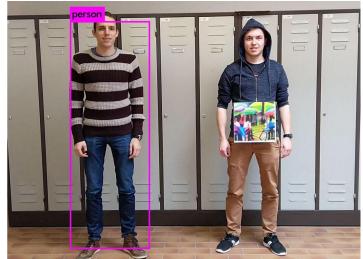
RADAR (Radio Detection and Ranging)

- 1. Not accurate
- 2. Can be fooled easily
- 3. Low resolution

They can't see anythin~!

LiDAR (Light Detection and Ranging)

simula

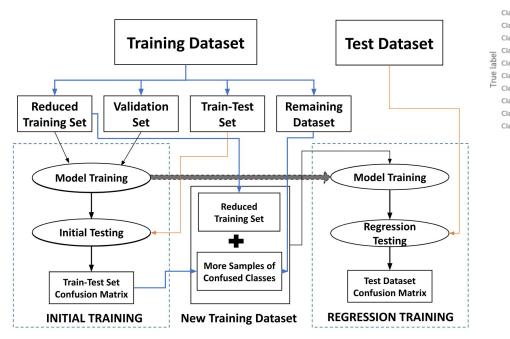

 Heavy
Fails with changing environment

Expensive

These robots can learn from the environment using AI. But Can we Trust AI?

By just changing the illuminance of an image, or by wearing a patched T-shirt, even State-of-the-art DNN's can show disastrous results.

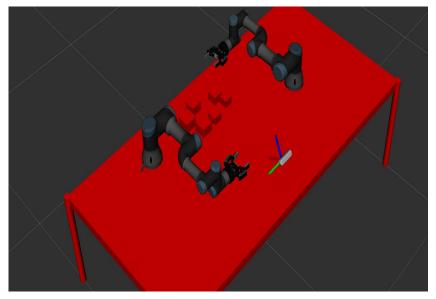
A. Nguyen, J. Yosinski, and J. Clune, "Deep neural networks are easily fooled: High confidence predictions for unrecognizable images".

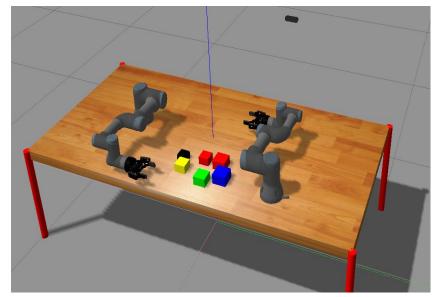


Testing is required for Al-driven collaborative robots due to these two reasons.

1. Cobots are not 100% accurate/reliable to solve Al-driven vision tasks.

2. It is important to create trust before deploying AI-Driven robots in collaboration with humans.

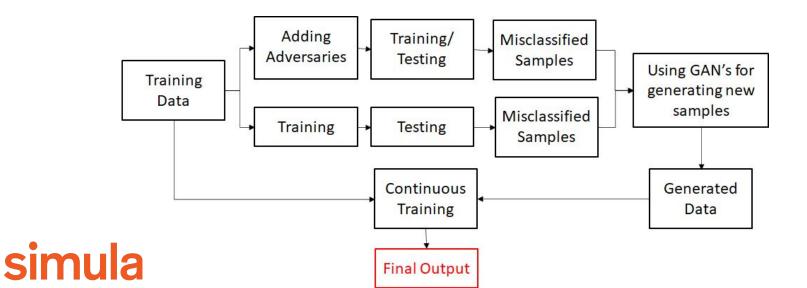

DeepRegression: Regression Training of Deep Learning Systems using Reduced Dataset



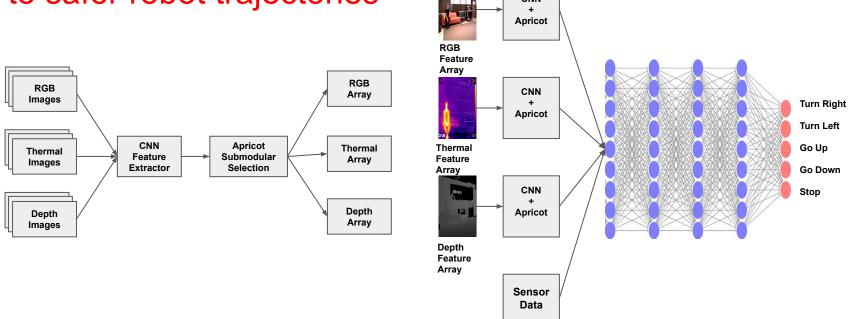
sim

	0	Confu	isio	n N	٩at	rix											
lass 0 - 96	з 0 1	L3 0	1	5	15	1	5	8			Confu	sion 0 5	Mati 6		9 1	2	
lass 1 - 0		4 1	7	4	3	14	14	10	- 1000	Class 0	0 0	0 0	1			2	- 10
		69 12	9	3	6	23	6	1		Class 1	58 12	0 1	0			0	
lass 3 - 1	1 3 1	17 978	1	59	1	9	45	17	- 800		6 963	0 10	1		_	7	- 80
lass 4 - 0	0 0	4 0	894	3	18	3	10	15	- 600	- Class 5		936 0	6		5 1	6	- 60
lass 5 - 4	4 1	0 2	0	786	16	0	11	1	000	9 Class 5 - 4 1	0 11	1 85	4	1 1	19 1	в	
lass 6 - 3		4 0	5	10	894	0	10	0	- 400	2	12 3	9 14	936	0 1	11 (D	- 40
lass 7 - 2		l6 13	6	7	0	974	19	30		Class 7 - 2 1	4 5	3 0	0	948	3 !	5	
lass 8 - 1		5 3	3	9	5	0	839	1	- 200	Class 8 - 3 32	9 10	4 4	4	0 9	1 5 (в	- 20
lass 9 - 1		0 1	56	6	0	4	15	926		Class 9 - 0 0	02	29 5	0	26	3 9	11	- 0
			_		1				- 0	5 5	33	5 5	5 5	5	55 010	3	0
										855 UR	03	2-					
Of Predicted label										label							
1											1					_	
	DAT	ASET					N	INIST		F-MNIST			C	FAI	R-1	0	
							N	INIST	-	F-MNIST			C	FAI	R-1	0	
	ULL D	ATAS	ΕT			_											
	ULL D TRAIN	atas N TIM	ET IE	1				1NIST 9.78	-	F-MNIST 113.89				FAI 170			
	ULL D	atas N TIM	ET IE														
	ULL D TRAIN	ATAS I TIM cond	SET IE s)	N													
DEI	ULL D TRAIN (in Se	ATAS I TIM cond GRES	SET IE s) SIO	N			9).82		
DE	ULL D TRAIN (in Se EPREC TRAIN	ATAS I TIM cond GRES	SET IE s) SIO IE	N			9	9.78		113.89				170).82		
DEI	ULL D TRAIN (in Se EPREC TRAIN (in Se	ATAS N TIM cond GRES N TIM cond	SET IE s) SIO IE s)	N			9	9.78		113.89				170).82		
DEI	ULL D TRAIN (in Se EPREC TRAIN (in Se ULL D	ATAS I TIM cond GRES I TIM cond	SET IE S) SIO IE S) SET				9 4	9.78 4.74		113.89 60.69			4	170 24).82 75		
DEI	ULL D TRAIN (in Se EPREC TRAIN (in Se ULL D ST AC	ATAS	SET IE S) SIO IE S) SET				9 4	9.78		113.89			4	170).82 75		
DEI	ULL D TRAIN (in Se EPREC TRAIN (in Se ULL D ST AC	ATAS I TIM cond GRES I TIM cond	SET IE S) SIO IE S) SET				9 4	9.78 4.74		113.89 60.69			4	170 24).82 75		
DEI	ULL D TRAIN (in Se EPREC TRAIN (in Se ULL D ST AC	ATAS N TIM cond GRES N TIM cond ATAS CUR	SIO SIO SIO SIO SET AC	Y			9 4	9.78 4.74		113.89 60.69			4	170 24).82 75		
DEI F TE DEI	ULL D TRAIN (in Se EPREC TRAIN (in Se ULL D ST AC	ATAS I TIM cond GRES: I TIM cond CON ATAS CUR %) GRES:	SET IE s) SIO IE s) SET AC ¹	Y			9 4 9	9.78 4.74		113.89 60.69			4	170 24).82 75 08		
DEI F TE DEI C	ULL D TRAIN (in Se EPREC TRAIN (in Se ULL D ST AC (S EPREC	ATAS N TIM cond GRES N TIM cond ATAS CUR %) GRES ET TE	SET IE s) SIO IE s) SET AC ¹ SIO SSIO	Y			9 4 9	99.78 4.74 99.12		113.89 60.69 92.95			4	17(24) 92.).82 75 08		

Metamorphic testing of collaborative robots to identify corner case scenarios

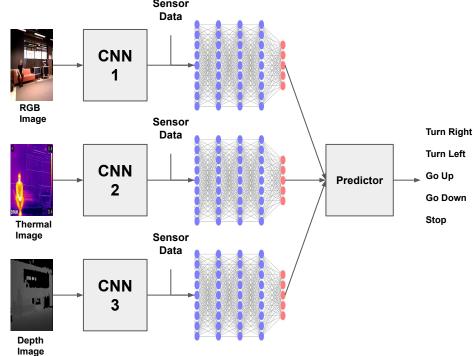


Visualization in RVIZ


Simulation in Gazebo

Improvised training of cobot with limited training data

- 1. Extract all samples which are misclassified while usual training and adversarial training.
- 2. Use GAN's to generate lookalike samples for misclassified samples.
- 3. Continue training using original and generated samples.
- 4. Apply the same to robotic dataset and deploy it in real-time.


Using multi-modeling techniques for huge datasets leading to safer robot trajectories

Schreiber, Jacob, Jeffrey Bilmes, and William Stafford Noble. "Apricot: Submodular selection for data summarization in Python." *Journal of Machine Learning Research* 21.161 (2020): 1-6.

Implement two different techniques and compared the results

To Conclude, we at Simula are trying to train and test the learning capabilities of industrial collaborative robots.

Thank You

What are Collaborative Robots?

DeepRegression: Regression Training of Deep Learning Systems using Reduced Dataset

Confusion Matrix

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 5 6 14 14 20 - 2009 25 6 1 - 600 3 10 15 - 600 0 11 1 - 600 0 10 000 0 11 1 - 200 4 15 0 - 0 - 0	Consol 0 27 3 Consol 0 0 27 3 Consol 0 0 0 Consol 0 0 0 0 Consol 0 1 0 0 Consol 0 0 0 0 0 Consol 0 0 0 0 0 Consol 0 0 0 0 0 0 Consol 0 0 0 0 0 0 Consol 0 0 0 0 0 0 Consol 0 0 0 0 0 Consol 0 0 0 0 Consol 0 0 Co	Jon Matrix
DATASET	d d d el MNIST	F-MNIST	CIFAR-10
FULL DATASET TRAIN TIME (in Seconds)	99.78	113.89	4170.82
DEEPREGRESSION TRAIN TIME (in Seconds)	44.74	60.69	2475
FULL DATASET TEST ACCURACY (%)	99.12	92.95	92.08
DEEPREGRESSION DATASET TEST ACCURACY (%)	98.78	92.25	90.42

Why is testing required for Al-driven robots

Need for Testing Learning Capabilities of Cobots.

- Are Cobots 100% accurate/reliable to solve Al-driven vision tasks?
- · Is it safe to deploy AI-Driven robots in collaboration with humans?
- Are there strong testing techniques available to test the learned abilities of robots/cobots?

Metamorphic Testing of Robots (Metero)

Visualization in RVIZ

Simulation in Gazebo