
A Proposal of Features to Support Analysis and Debugging of Declarative
Model Transformations with Graphical Syntax by Embedded Visualizations

Florian Ege
Inst. of Software Engineering and Programming Languages

Ulm University
florian.ege@uni-ulm.de

Matthias Tichy
Inst. of Software Engineering and Programming Languages

Ulm University
matthias.tichy@uni-ulm.de

Abstract—In model-driven software engineering (MDSE),
chains of model transformations are used to turn a source
model via a series of intermediate models into a target artifact.
At times such a transformation chain does not deliver the
expected result, either because a particular transformation step
fails due to unmet preconditions, or the produced target artifact
is not the desired one. To better understand the transformation
process, and to locate and correct defects in the models or
transformations involved, developers need appropriate tool
support for analysis and debugging.

MDSE tools provide a spectrum of techniques for analysis.
These range from model checking approaches for proving
logical properties of transformations to low-level stepwise de-
bugging functionality that exposes how particular algorithms,
e.g., graph matching, are implemented. However, these existing
analysis features often do not present concrete suggestions
directed at locating and fixing defects, or require developers to
reason about their models and transformations in a procedural
way.

We focus on declarative model-to-model transformations
with graphical syntax and consider defects located in source
models or transformation specifications. For each of those
defects, we sketch how a specific approach based on visualizing
information integrated in the graphical syntax could support
identifying and fixing that defect. These techniques aim towards
enabling developers to analyze models and transformations on
the same level of abstraction and with representations in the
same syntax they normally work with.

Keywords-declarative model transformations, graphical syn-
tax, analysis, debugging

I. INTRODUCTION

Model-driven software engineering (MDSE) aims at deal-
ing with complexity by providing a higher level of abstrac-
tion for designing software systems. In MDSE, develop-
ers create domain-specific high-level models. Intermediate
artifacts, like lower-level models or textual source code
are then automatically derived from high-level models by
applying model transformations. Model transformations are
expressed in transformation languages that follow particular
programming paradigms and have their own specific textual
or graphical syntax (cf. [1]).

Declarative, endogeneous model transformations, as im-
plemented by Henshin [2], are specified by defining a set
of model elements that should be matched against a part of

the source model and some modifications related to those
elements. The target model is then constructed by applying
the modifications on the matched part of the source model,
whereby elements can be preserved, removed, new ones
created, or their attributes be modified.

At the level of abstraction, at which developers work, they
see a declarative transformation as an atomic modification
of a part of the source model to create the target model. The
declarative definition doesn’t specify a detailed operational
semantics, i.e., a specific execution order of basic transfor-
mation steps (matching, creation, removal or modification of
model elements). Declarative definitions express a transfor-
mation by specifying how the target model is structured in
contrast to how exactly it is created procedurally. Developers
don’t need to care about those details, while it is left
to the underlying transformation engine to perform this
efficiently. This constitutes the main advantage of declarative
specifications.

However, on the other hand this abstract view makes it
difficult to debug faulty source models or transformations
(cf. [3]), that can cause target artifacts to be incorrect or
invalid according to the terminology introduced by Hibberd
et al. in [4]. Although most developers are familiar with de-
bugging techniques for imperative programming languages,
like stepping through statements, these are not directly ap-
plicable to declarative transformations. Imperative languages
are based on an execution model that transforms program
state by a sequence of steps. This fits the implementation
of algorithms in the transformation engine, but not the
declarative atomic view on transformations that developers
have.

In this paper, we focus on declarative transformations with
graphical syntax. We discuss some problems that we expe-
rience regularly when working with model transformations,
e.g., why a transformation is not applicable to a model,
and propose features that use visualizations embedded in
the graphical syntax to aid in analysis and debugging. To
illustrate our approach, we consider a simple use case of
endogeneous transformations as a running example. After
looking at related work in Sec. II, we introduce our running
example in Sec. III. In Sec. IV, we then propose features to

support analysis and debugging at the level of abstraction
of models and transformation artifacts by sketching how
visualizing information embedded in the graphical syntax
of models and transformation specifications can be used
to suggest, e.g., how an artifact could be modified to
make a transformation applicable. We conclude by giving a
summary of this paper and outlining future work in Sec. V.

II. RELATED WORK

In this section we give a brief overview of related work,
focusing on techniques to debug model transformations or
prove properties of them.

For the Henshin tool, a debugging approach for the match-
ing phase of a model transformation has been presented
in [5]. This debugger allows stepping through the matching
attempts of the engine in sequence. The manual effort is
reduced by features like, e.g., letting the algorithm run until
a breakpoint condition is reached.

For transformation languages based on the graph rewriting
paradigm, Mészáros et al. [6] present techniques for the vi-
sual animation of ongoing transformations by showing pair-
ings of elements from the rule-LHS and the source graph.
The execution of the transformation can then be observed
stepwise, with mechanisms like breakpoints, that are known
from debugging imperative programs. The general purpose
graph transformation tool Groove [7] supports debugging
of transformations by remembering the sequence of applied
transformation operations. This allows rolling back to a
previous state in a chain of transformations, but makes the
temporal order of steps very explicit. This is of course more
natural, if an imperative algorithm is expressed by graph
transformations in contrast to a declarative transformation
of a model.

The above approaches are useful to see what is going on
inside the transformation engine, e.g., during rule matching,
yet this means working on a lower, procedural level when
debugging transformations. Depending on the size of the
models, a lot of (eventually failing) matches have to be
inspected, with the downside that they are presented in an
order depending on engine internals, instead of showing
them in a meaningful order, like from most promising partial
match to least. This can quickly become quite laborious.

Schönböck et al. [8] introduced transformation nets, a
formalism based on typed and colored Petri nets, to represent
the detailed steps taken by an engine during execution of
a transformation, from initial matching of source model
elements to creation of target model elements. This however
also adopts a rather procedural view of a transformation.
Moreover, the complex and expressive visualization of the
transition nets is significantly distinct from the graphical
syntax in which transformation rules or source models are
represented. This makes it necessary to mentally connect
different formalisms and translate between them.

With formal verification techniques, properties of mod-
els in connection with transformations can be proven.
Schilling [9] introduces an approach for automatic verifica-
tion of models that are represented by graphs. To keep the
state space manageable, the model checker works on small
graph patterns and proves properties of graph transforma-
tions inductively on small parts of the graph. However, if a
transformation is not applicable at all to a model, a failure
to verify that a correct model state can be derived by the
transformation does not provide any insight about the defect
in the transformation or the model that prevents the rule’s
application.

The Groove tool also allows for the appliction of model
checking methods on systems, whose states can be mapped
to associated graphs (cf. [10]). Properties to check are
expressed with graph-based temporal logic formulas that are
considered over a chain of transitions on graphs. This does
however not provide concrete suggestions to fix the system
in case of a negative proof of some property.

In summary, existing approaches to debugging model
transformations either tend towards an imperative, proce-
dural view on transformations, which is a mismatch to the
declarative paradigm, or make statements about properties of
a transformation (e.g., non-applicability) without providing
detailed information as to the concrete cause and what
artifact could be changed and how to alleviate the problem.

III. PARSING A FORMAL LANGUAGE AS EXAMPLE

As our running example, we introduce a simple language
for ordering pizza by the following grammar in Backus-Naur
form, for which parse trees shall be constructed. The purpose
of this example is not to claim that model transformations
are a suitable technology for parsing tasks, but merely to
serve as a commonly known domain for illustrating our
proposed analysis features.

〈PizzaOrder〉 ::= 〈PizzaSpec〉 1

| 〈PizzaSpec〉 and 〈PizzaOrder〉 2

〈PizzaSpec〉 ::= Pizza 〈Name〉 3

| Pizza with 〈Toppings〉 4

| Pizza 〈Name〉 without 〈Toppings〉 5

| Pizza 〈Name〉 with 〈Toppings〉 6

| Pizza 〈Name〉 without 〈Toppings〉 with 〈Toppings〉 7

〈Toppings〉 ::= 〈Topping〉 8

| 〈Topping〉 , 〈Toppings〉 9

〈Name〉 ::= Capricciosa | Margherita | Rustica | ... 10

〈Topping〉 ::= Artichokes | Garlic | Olives | Peperoni | ... 11

This grammar derives sentences like the following:
• Pizza with Mushrooms, Onions, Parmigiano
• Pizza Contadina without Asparagus
• Pizza Funghi without Parsley, Olives with Ruccola

and Pizza Hawaii without Ananas with Mozzarella,
Oregano

Symbol

PizzaToken

WithToken

WithoutToken

CommaToken

Token

ToppingToken

+value: String

NameToken

+value: String

0...*

next

Variable

PizzaOrderVar ToppingsVar

ToppingVar

NameVar

PizzaSpecVar

derived{ordered}

1...*

AndToken

Figure 1. Metamodel for parse trees according to the pizza grammar.

next next next nextnext

: PizzaSpecVar

: PizzaToken : WithoutToken: NameVar : ToppingsVar : ToppingsVar: WithToken

<create> derived

<create> derived[last]<create> derived[first]

⇒ Rule PizzaSpec(pizzaToken, nameVar, withToken, toppingsVar1, withToken, toppingsVar2)

<create>

Figure 2. Transformation rule for the PizzaSpec grammar production no. 7.
The grey elements are matched and preserved, the green ones are created
by the transformation.

Fig. 1 depicts the metamodel containing classes for token
and variable types. For each numbered production rule of the
grammar, a corresponding graph transformation rule exists.
Fig. 2 shows an example using a graphical syntax like that
of Henshin. Those rules realize bottom-up construction of
a parse tree by repeatedly applying the transformations that
construct increasingly higher-up variable nodes, up to the
root. Each symbol has next relations to its successors at
different height levels of the tree. These connections are
lifted up to variables in the parse tree by the transformation
rules in Fig. 3.

Fig. 4 shows the parse tree for deriving the token sequence
“Pizza Margherita with Peperoni, Olives”. The original
source model consisted of the grey token objects on the
bottom line and the next relations that string them together.
On top of that, the transformation rules built up a parse tree
with variable nodes, derivation relations and lifted next
relations, all in green.

IV. ANALYSIS AND DEBUGGING SCENARIOS IN MODEL
TRANSFORMATIONS AND ASSOCIATED VISUALIZATIONS

In this section, we discuss some common scenarios that
are often encountered when developers need to debug model
transformations. For each scenario, we outline its challenges
and propose features to address them, using visualizations
embedded in the graphical syntax for transformation rules

Symbol
next

derived[last]

<create> next

Symbol

Symbol

next

derived[first]

Symbol

SymbolSymbol

<create> next

Figure 3. Lifting rules for the bottom-up propagation of next relations.

next next next next

: PizzaOrderVar

: PizzaToken : WithToken
: NameToken

value="Margherita"

: ToppingToken

value="Peperoni"

: ToppingToken

value="Olives"

next

: NameVar : ToppingVar

: ToppingsVar

: ToppingVar

: ToppingsVar

: PizzaSpecVar

: CommaToken

10 1111

8

9

6

1

<create>
derived

<create> derived

<create> derived<create> derived

<create> derived

<create> derived

<create>
next

<create>
next

<create> derived

<create>
 next

<create>
next

<create> derived

<create> derived

<create>
 next <create> derived

Figure 4. Example parse tree for “Pizza Margherita with Peperoni,
Olives”. For clarity, the next relations are drawn in a dashed style. The
numbers in circles refer to the corresponding grammar production rule that
created this variable object.

or source models. We conclude this section with a discus-
sion concerning viability and scalability of our envisioned
features.

A. Scenario: Rule specification is correct, expected matches
in source model do not occur due to defects in the model.

A source model, to which a transformation is to be
applied, may contain defects. When this causes the trans-
formation to fail through a lack of matches between the
rule specification and the model, developers would like to
see the parts of the source model, that are most likely to
be those that should be matched, but contain local defects.
This allows for a more targeted approach at discovering how
the defects have been introduced. As a concrete example to
illustrate this scenario, we use the PizzaSpec production rule
from Fig. 2, applied to a token sequence source model that
violates the grammar for the pizza language.

1) Heatmap for Degree of Matching of Source Model
Parts: Assuming that matches of structures in the source
model fail due to small local defects, developers could be
supported by directing their attention to those parts of the
model that are closest to a match. To decide which parts
to highlight, we define a degree of matching: the larger a
subgraph of the source model that can be matched to the
structure expressed in the rule is, the higher we consider
its degree of matching. To visualize this, we highlight the
respective parts of the model with color levels akin to a
heatmap (see Fig. 5). The “hotter” a structure in the source
model, the closer it is to be matched by the rule. This
highlights where small edits could be made to the model to
enable matches. In this example, the longest and therefore
“hottest” partial match is a token sequence with the defect of
a missing pizza name. Algorithmically, the partial matches
can be computed by considering the rule structure and
creating mutants of it, up to a certain edit distance (e.g.,
add or remove just one object or relation). These mutants
are then matched against the source model.

2) Suggested Modifications of Source Model: In addition
to knowing where to make edits, it would be helpful for
developers to get concrete suggestions of modifications to

nextnext: PizzaToken : ToppingsVar: WithToken

next next nextnext: PizzaToken : WithoutToken: NameVar : AndToken

next next nextnext: PizzaToken : WithoutToken : ToppingsVar : ToppingsVar: WithToken

Figure 5. Heatmap for degree of matching of source model parts to the
structure expressed in the grammar production rule no. 7 (see Fig. 2).

the source model that would make the transformation rule
applicable. Ideally, the recommended modifications should
be minimal, local changes to the model. They can be
computed by creating mutants of the rule, matching those
and then reversing the mutating edits. If the changes concern
attribute values, the concrete values or conditions on those
values in the rule specification can be considered as a set
of constraints to be solved. We propose the visualization
shown in Fig. 6. Here, a series of model elements to remove
(colored, dashed) or add (colored, solid) are highlighted,
with the color depending on a heatmap scheme signifying
how extensive the modification would be (smaller edit dis-
tance is better/“hotter”). To further restrict the search space,
developers could be allowed to express additional knowledge
in the local environment of a partial match. They could pin
down model elements they are sure must be present, thereby
preventing their suggested removal, or conversely forbid the
addition of certain elements.

next

next next nextnext : WithoutToken

: NameVar

: ToppingsVar : ToppingsVar: WithToken

next

: PizzaToken

next next next nextnext: PizzaToken : ToppingsVar

next next next nextnext: PizzaToken : WithoutToken: NameVar : ToppingsVar : ToppingsVar: WithToken

: NameVar : WithoutToken: WithToken : ToppingsVar

Figure 6. Suggested modifications of the source model with heatmap
coloring.

B. Scenario: Source model is correct, expected matches do
not occur due to incorrect transformation rule specification.

Conversely, a transformation might not be applicable to a
part of the source model because an incorrect rule specifi-
cation does not match its structure. In this case, developers
could be assisted by showing them how to fix the rule, if
there is a small edit operation that would enable a match.

1) Suggested Modifications of Transformation Rule: As
described in Sec. IV-A1, mutants of the rule specification
with small edit distance can be created. These mutants can
then be applied to a selected part of the source model. If
they match, the edited elements in the mutants can then be
assigned a heatmap level proportional to the edit distance.

Additions and removals of model elements follow the same
graphical syntax as the visualization in IV-A2.

C. Scope and Viability of the Proposed Features

We introduced our proposed features for analyzing and
debugging model transformations using a very basic and
concise running example with endogeneous transformations.
However, experiences from the industrial practice suggest
that source models, to which transformations are applied,
are often very large, up to millions of nodes. To deal with
such extensive models, tools can offer views and filters for
displaying only the relevant parts of a model (those with
embedded visualizations), supplemented with commands to
quickly browse between them (e.g., jump between partial
matches, ordered by descending degree of matching). The
number of suggested modifications that are generated can be
limited by specifying an upper bound on the edit distance
to structures that are already present in the artifacts. Also,
in general, the source and target models can have different
types, so different syntaxes might be involved in rule specifi-
cations or source models. If the embedded visualizations are
not suited for a concrete graphical syntax, a more appropriate
abstract syntax can be used.

V. CONCLUSION AND FUTURE WORK

We discussed some common scenarios encountered by
model engineers, when they are analyzing or debugging
declarative model transformations. To support these recur-
ring tasks, we proposed a series of techniques based on
visualizing information embedded into the graphical syntax
of transformation rules and source models. We motivated
these features by pointing out that they would have the ad-
vantage to allow developers to use the same representations
for analysis and debugging tasks that they use to create
artifacts like models and transformation rule specifications
in the first place. This avoids the shortcomings of many
established MDE tools, that force the developer to step
through the imperative execution of matching algorithms
in the transformation engine, and thus impose the mental
burden of a paradigm shift.

For future work, we plan to integrate our proposed fea-
tures into Henshin. Further, we would then like to evaluate
them in a user study, to see if there is a quantifiable speedup
for solving representative debugging tasks on real world
models using these features compared with the existing
means for stepwise debugging. Also, we would like to
explore how similar visualizations can be used with dif-
ferent concrete syntaxes than the graph-like “box-and-line-
languages” we considered so far, e.g., graphical syntaxes
that use nesting of elements, or how declarative debugging
techniques can be used in combination with imperative ones
to draw on the respective advantages of both approaches.

REFERENCES

[1] M. Biehl, “Literature study on model transformations,” Royal
Institute of Technology, Tech. Rep. ISRN/KTH/MMK, vol. 291,
2010.

[2] D. Strüber, K. Born, K. D. Gill, R. Groner, T. Kehrer,
M. Ohrndorf, and M. Tichy, “Henshin: A usability-focused
framework for EMF model transformation development,” in
Graph Transformation - 10th International Conference, ICGT
2017, Held as Part of STAF 2017, Marburg, Germany, July
18-19, 2017, Proceedings.

[3] M. Lawley and K. Raymond, “Implementing a practical
declarative logic-based model transformation engine,” in Pro-
ceedings of the 2007 ACM Symposium on Applied Computing
(SAC), Seoul, Korea, March 11-15, 2007.

[4] M. Hibberd, M. Lawley, and K. Raymond, “Forensic debug-
ging of model transformations,” in Model Driven Engineer-
ing Languages and Systems, 10th International Conference,
MoDELS 2007, Nashville, USA, September 30 - October 5,
2007, Proceedings.

[5] M. Tichy, L. Beaucamp, and S. Kögel, “Towards debugging
the matching of henshin model transformations rules,” in
Proceedings of MODELS 2017 Satellite Event.

[6] T. Mészáros, P. Fehér, and L. Lengyel, “Visual debugging
support for graph rewriting-based model transformations,” in
Proceedings of Eurocon 2013, International Conference on
Computer as a Tool, Zagreb, Croatia, July 1-4, 2013.

[7] A. H. Ghamarian, M. de Mol, A. Rensink, E. Zambon, and
M. Zimakova, “Modelling and analysis using GROOVE,”
STTT, vol. 14.

[8] J. Schönböck, G. Kappel, A. Kusel, W. Retschitzegger,
W. Schwinger, and M. Wimmer, “Catch me if you can -
debugging support for model transformations,” in Models in
Software Engineering, Workshops and Symposia at MODELS
2009, Reports and Revised Selected Papers.

[9] D. Schilling, “Kompositionale Softwareverifikation mechatro-
nischer Systeme,” Ph.D. dissertation, University of Paderborn,
Germany, 2006.

[10] A. Rensink, “Explicit state model checking for graph gram-
mars,” in Concurrency, Graphs and Models, Essays Dedicated
to Ugo Montanari on the Occasion of His 65th Birthday.

