Engineering Hybrid Graphical-Textual Languages

with Sirius and Xtext:

Justin C. Cooper
Department of Computer Science
University of York
York, UK
justin.cooper @york.ac.uk

Abstract—Embedding textual domain specific languages into
graphical modelling workbenches can help deliver the best of
both worlds. In this paper, we discuss common requirements
for hybrid textual/graphical modelling workbenches, and we
present requirements, existing approaches and open challenges
for integrating graphical editors implemented using the state-of-
the-art Sirius graphical modelling framework, and textual editors
developed with Xtext within the Eclipse Modeling ecosystem.

Index Terms—Hybrid Graphical Textual Modelling, Xtext,
Sirius, EMF, Refactoring, Code Generation

I. INTRODUCTION

The Eclipse Modelling Framework (EMF) is one of the most
widely used open source modelling frameworks, and allows for
the creation of domain specific modelling languages (DSLs).
For a DSL to be used effectively, the language must have an
appropriate concrete syntax. Several frameworks, built atop
of EMF, allow for textual and graphical concrete syntaxes
to be designed and implemented. These frameworks allow a
language designer to precisely define the language syntaxes
and create workbenches and editors for the language based on
the Eclipse IDE.

Graphical, diagram-based, concrete syntaxes are generally
suitable for defining structure and relationships between model
elements. However defining fine detail, such as precise be-
haviour, can often be tedious and error prone to capture and
maintain graphically. For such detail (e.g. action languages),
textual syntaxes are generally more appropriate. By having a
modelling workbench which supports both textual and graphi-
cal syntaxes, the language designer and users of the modelling
workbench can experience the best-of-both worlds of textual
and graphical modelling.

This paper summarises previous work on integrating graph-
ical and textual syntaxes, based on the Sirius and Xtext
EMF-based frameworks. Both frameworks are state-of-the-
art, robust, actively maintained and widely used. We note
that the integration of the two frameworks is still in its
early stages, with the tooling having several limitations such
as: a lack of refactoring support, difficulties of dealing with
the embedded models and the required knowledge of lower-
level implementation details of EMF, Xtext and Sirius. We
present that, by building on previous work, and addressing the
current tooling limitations, the technique of embedding textual

Requirements and Challenges

Dimitris Kolovos
Department of Computer Science
University of York
York, UK
dimitris.kolovos @york.ac.uk

languages into graphical workbenches may help to close the
gap between models and code implementations.

The paper is organised as follows. In Section [[I, we provide
background into the frameworks used to create the workbench
and motivate the need for embedding textual DSLs into
graphical modelling workbenches. In Section [[II} requirements
are presented for hybrid textual-graphical tooling. Section [IV]
provides an overview of related work on integrating the Sirius
and Xtext frameworks. Section [V]presents the open challenges
integrating Xtext and Sirius. Section concludes the paper
and provides areas for future work.

II. BACKGROUND AND MOTIVATION

In this section we briefly introduce Ecore, Xtext and Sirius,
which are used in this work to create the abstract and concrete
syntax of DSLs and associated tooling. We then motivate why
a modelling workbench supporting graphical and textual DSLs
is often needed.

A. EMF Ecore

As part of the Eclipse Modelling Framework, Ecore is
an object-oriented metamodelling language that enables the
definition of the abstract syntax (metamodel) for a language
using concepts such as EClass, EAttributes, EOperations,
EDataTypes and EReferences.

B. Xtext

Xtext is a framework which allows for the creation of textual
syntaxes for Ecore metamodels. By defining a metamodel
using Ecore and Xtext’s EBNF-based notation, Xtext automati-
cally generates all of the textual concrete syntax infrastructure,
such as a linker and parser. Xtext also generates an Eclipse
editor including developer assistance features such as syntax
highlighting, code completion and error detection. Xtext is
highly customisable as it utilises the Dependency Injection
pattern, allowing features such as the syntax highlighting or
refactoring behaviour to be easily customised.

C. Sirius

Sirius is a framework, based upon the Eclipse Graphical
Modelling Framework (GMF), that allows a language designer
to specify a graphical representation for an Ecore based

metamodel. Sirius provides a Viewpoint Specification Model
(VSM), which describes the concrete syntax of an Ecore
model. The VSM allows diagrams (node-edge and sequence-
diagram-like), tables, matrices, trees to be created with mini-
mal knowledge of the internals of its underlying GMF, as well
as being able to create custom properties views and use Java
to implement custom services.

D. Motivation

Hybrid graphical-textual editors have advantages such as
the faster modelling of tasks (textual languages can reduce
the number of clicks when creating and editing models, but
graphical languages have been shown to reduce the time of
linking model elements together) and the ability to edit models
outside of a modelling environment [1]].

In this line of work, we are interested in languages which
are predominately graphical, but which would benefit from an
embedded textual sub-language to define complex expressions
or behaviour. This is a pattern we have encountered on
several occasions in interactions with industrial collaborators,
particularly where full code generation is required. Examples
of such languages include:

o A state-machine language where states and transitions
are specified graphically, but guards in transitions and
actions in states are specified using a textual expression
sub-language

o An object-oriented modelling language where classes,
structural features and associations/inheritance are mod-
elled graphically, but the body of operations is specified
textually

III. REQUIREMENTS FOR HYBRID GRAPHICAL-TEXTUAL
MODELLING WORKBENCHES

A simple solution for supporting such scenarios is to model
textual expressions as plain text properties that can be typed
into the “Properties” view of a Sirius-based editor in a generic
text box. The main shortcomings of such a basic solution
are that users are provided with little guidance and feedback
on the validity of the content of these textual properties, and
that model management programs (e.g. model-to-text transfor-
mations, model-to-model transformations) need to parse the
values of such properties explicitly to extract and navigate
their abstract syntax graphs. To address these shortcomings
we envision a solution that deeply integrates Sirius and Xtext
to meet the following requirements.

A. Syntax-Aware Text Editing

Textual languages require a large number of features for a
developer to use effectively. These include mechanisms found
in many programming integrated development environments
(IDEs) such as Eclipse, Intellij and Visual Studio [2]. Notable
features include:

o Syntax Highlighting — keywords, variables, language fea-
tures can be identified visually;

o Error detection markers — feedback on syntactic or se-
mantic errors is provided to the user whilst typing;

o Auto-completion — syntax and context-aware completion
of statements, such as providing a suggestion for the
variable name the developer wants to use;

o Refactoring — e.g. renaming elements and their references
consistently in an atomic operation

Such assistance mechanisms for a textual language are
crucial for improving accuracy, reducing intensive reliance on
manual checking of typed text and thus increasing the overall
productivity of the developer [2].

B. References Between the Textual and Graphical Parts

In order for complex behaviour to be defined, the textual
language must be able to reference elements that are modelled
graphically elsewhere in the model.

C. Uniform error reporting

The modelling tool must report errors and warnings in both
the graphical and the textual part of the model in a consistent
and uniform way (e.g. in the IDE’s “Problems” view), and
- where possible - provide quick fix actions that can resolve
these problems.

D. Integrated Abstract Syntax Graph

In order for the the model to be transformed into other
artefacts such as code or other models, the tool should ex-
pose hybrid textual/graphical models to model management
programs (e.g. model-to-model, model-to-text transformation
engines) in the form of a unified abstract syntax graph that
integrates elements from both the textual and the graphical
part of the model.

I'V. RELATED WORK

In this section, we discuss work that Obeo, Typefox [3] and
Altran [4] have previously conducted on integrating Sirius and
Xtext to create hybrid model editors.

In [3], Obeo and Typefox have provided two case studies
integrating Xtext with Sirius. Obeo and Typefox show that it is
possible to synchronise graphical and textual concrete syntaxes
for the same EMF model. The benefits of textual and graphical
modelling are presented using a farming case study, whereby
it is possible to specify complex behaviour such as cultivating
corn graphically, but is much easier to define textually.

The problem with integrating textual and graphical mod-
elling in the way presented by [3] is that models can then
get very complicated and polluted with large amounts of
detail, making the diagram very difficult to understand. When
creating system implementations, it may be more appropriate
to use textual DSLs and graphical modelling languages in a
complementary way, that being, to specify high-level elements
graphically in one modelling language, and more low-level
details using a complementary, separate textual language.

In [3]], a second example using Xtext and Sirius is presented,
but in contrast to the first approach, two separate DSLs are
created. A computer systems DSL is defined using Ecore and
Sirius, but a separate textual DSL (defined in Xtext), used
to describe constraints on the components of the computer

system. This textual DSL can reference elements in the
Computer DSL by referring to the Ecore metamodel of the
Computer DSL. The Sirius editor is then extended to provide
an embedded textual editor with support for some textual
language assistant mechanisms (such as syntax highlighting).
The code created in the Xtext editor is then persisted in
a textual attribute within model elements of the graphical
language.

As an Xtext editor is embedded in the Sirius editor, the
textual DSL code can be written with the assistance of syntax
highlighting and code completion. The user can also reference
and navigate to elements in the Sirius diagram. This approach
allows for graphical elements to be referenced and also avoids
large amounts of detail being present in the graphical model,
which is a major drawback of the approach presented in [3]].
This work has since been extended by Altran [4] to allow
embedded editors to be implemented in Sirius diagrams as
well as the Eclipse Properties view.

Figure 1| shows a workbench created by adapting the case
study in [3]]. Note that ’1” shows the Sirius diagram, 2" shows
the Eclipse problems view (displays any errors in the model)
and ”3” shows the embedded Xtext editor in the “Properties”
view, showing error detection, referencing to the graphical
model, syntax highlighting and code completion.

Although we are focusing on creating domain specific
languages with Sirius and Xtext, Xtext has been used to create
hybrid graphical-textual languages with Papyrus in [1]], for a
hybrid-textual graphical UML (Unified Modelling Language)
editor. Xtext has also been used in environments outside of
Eclipse, such as in [5]], where Theia (a desktop and web IDE)
and Sprotty (a graphical visualisation framework) are used to
create a hybrid graphical-textual domain specific modelling
tool.

SvReviNivM~| # &~ w X % - v iv o 3% Palette !
4 DemoWindow ReQii-8-
N -
4 Window
4 Button
2 Problems 53 R v =08
1 error, 0 warnings, 0 others
Description Resource Path Location Type
v © Errors (1 item)
‘@ Couldn't resolve reference to Window 'DemoV Button_4447.... /ExampleGui line: 2 /Exam... GuiDs! Problem
[T] Properties 52 g LR v =8

+ Button ResizeButton

Gui v code
Dmodel
set DemoWindow.width = 5

i set DemeWindow? height =
Semantic D set,

Appearance

Style g Window DemoWindow

Fig. 1. Sirius Modelling Workbench with Embedded Xtext Editor

V. OPEN CHALLENGES

Although previous work carried out by Obeo, Typefox [3]
and Altran [4]] has shown it is possible to embed a textual
DSL created using Xtext into a graphical modelling workbench
created using Sirius, there are still several open challenges
preventing this tool from meeting the requirements set out in
In this section, we briefly introduce and detail the open
challenges.

A. Storage of textual DSL code

The current work stores the textual model data within a
string attribute in the model. Storing the Xtext DSL code
in a string attribute in the model has several disadvantages.
One problem is when dealing with operations such as rename
refactoring and the checking of errors. The model must be
queried for all of the textual DSL, even if the DSL code
contains no references to the object being refactored, and
loaded into memory to ensure that all references are identified.

shows the metamodel of the graphical modelling
language (represented by Sirius). Note that any textual DSL
code must be stored as a string attribute such as guiDSL (““1”)
in “2” shows a derived attribute, a potential solution

to the challenge described in

Y Guiftement

o name : EString
o Iabel : EString

@ width : EString
o heignt : EString

T

B window

B 8utton

E Application

= name ; Estring [0..*] windows [0.%] buttons | < gust\é ESV‘"Q_C
o jfcodeObject : EObj

Fig. 2. Ecore metamodel to store textual DSL code

Another potential issue is model comparison. If the model
is serialised as XMI and changes are made to the model,
when comparing models, a user would see the textual DSL
code within XML tags. This would mean there would be no
formatting or syntax highlighting for the user trying to view
changes to the textual DSL code. If other model elements
have changed as well as the textual DSL code, this can make
comparison and merging the code difficult.

An alternative to storing the textual DSL as a string attribute
in the metamodel, could be to persist the textual DSL as
separate files on the file system and store a link to the file
in the model.

By storing the text in a file on the file system, this allows the
Xtext framework to automatically identify and provide markers
in the Eclipse Problems view without having to write any
additional logic. Another advantage of persisting the textual
DSL in a separate file rather than a string attribute is that the
textual DSL can be edited in an environment outside of the
embedded editor in Sirius. The embedded editor in Sirius does

not provide features such as an Outline view, meaning that if
there was a large amount of code in the model, it may be more
appropriate for a user to edit this code in a full-page editor
rather than the embedded editor. If the DSL code is persisted
in a file on its own, this solves this issue of comparison and
merging as it is no different from the comparison and merging
of normal textual code.

One major drawback to this approach is the model must
keep a reference to the file located in the Eclipse workspace.
This reference may become broken if files/model elements are
renamed (depending on the implementation of the linking) and
care needs to be taken when deleting model elements that the
files are also removed.

B. Scoping and referencing

Only global scoping is currently supported in the solutions
provided in the previous work i.e. every model element rep-
resented in Sirius and every model element represented in the
Xtext model (such as variable declarations) are all in scope to
every other element. Xtext does provide functionality to create
custom scoping rules for the textual DSL, but this may lead
to several complex scoping rules needing to be created which
are specific to individual Xtext DSLs.

C. Rename refactoring

Rename refactoring is challenging for several reasons.
Firstly the embedded Xtext editor is not an Eclipse editor, it
is a custom widget which is not easy to extend. For example,
there is no simple mechanism for attaching handlers to it.

Xtext allows for the customisation of rename refactoring
to be completed by providing a RenameStategy interface.
Another challenge is that the primary rename refactoring
engine relies on the Xtext DSL persisting on the file system.
Currently the Xtext DSL is stored within a textual attribute
in the model represented by Sirius. The ease of implementing
rename refactoring is determined by which mechanism the
Xtext DSL code is persisted in the model.

In the case of the textual DSL using references to files on
disk, this is fairly straightforward and the refactoring engine
provided by Xtext can be augmented with the custom rename
strategy to allow the refactoring of the Sirius model.

In the case of the textual DSL being persisted in a string at-
tribute in the model, each model element containing code must
be iterated through to find the textual DSL code, creating an
in-memory model of the textual DSL code and then persisting
at least some code on the file system. These approaches need
to ensure that all temporary files are cleared.

D. Displaying of error/warning markers

The solutions in the previous work display error/warning
markers if the user has the embedded Xtext editor open. If
a user closes the embedded editor with errors, these errors
are no longer visible. Similarly, if an error occurs in the
Xtext DSL code, without the embedded editor being open,
for example a referenced model element being deleted, a
user would not know an error exists unless they opened all

the model elements containing the Xtext DSL code and then
inspected the highlighted errors.

The problem with displaying error/warning markers is
closely related to the storage of the textual DSL code. As
noted in[V-A] if the code was stored in separate files on the file
system, the Xtext framework will automatically check if there
are any errors and display these in the Eclipse problems view
without any additional configuration or logic being written.
This can be seen in whereby the DSL code has
been copied into a file and the Xtext framework (builder) has
detected the issue and reported it in the Problems view.

Alternatively, if the code was to be persisted in a string
attribute of a model element, logic must be written to iter-
ate through each model element containing code and create
appropriate markers.

E. Accessibility of textual model

There is currently no mechanism to easily access the textual
DSL model. This is necessary for performing operations such
as code generation.

One solution is to parse the textual DSL code stored in
the string attribute and assign this to a derived reference in
the model. When accessing the reference as part of a model
management operation, such as a model-to-text transformation,
the respective sub-model will be returned, allowing it to be
queried and used as part of the transformation.

VI. CONCLUSION

In this paper we have motivated the need for a modelling
workbench supporting hybrid graphical-textual concrete syn-
taxes. We have discussed how such a modelling workbench
can be used to close the gap between models and code by
embedding textual action languages into a graphical model
editor. We then defined the requirements for a modelling
workbench to allow action languages to be embedded into
models. We note that previous work has been carried out into
integrating Sirius and Xtext, however there are open challenges
that must be solved before this technique can be used to close
the gap between models and code.

We are currently working on resolving the challenges dis-
cussed in this paper and creating suitable case studies to test
whether this approach can effectively close the gap between
models and code.

REFERENCES

[1] L. Addazi, F. Ciccozzi, P. Langer, and E. Posse, “Towards seamless hybrid
graphicaltextual modelling for uml and profiles,” 06 2017, pp. 20-33.

[2] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how
we know it,” vol. 38, no. 1, pp. 5-18.

[3] Xtext sirius integration - white paper. [Online]. Available: https://www.
obeodesigner.com/resource/white-paper/WhitePaper_XtextSirius_EN.pdf

[4] Xtext sirius integration. [Online]. Available: https://altran-mde.github.io/
xtext-sirius-integration.io/

[5] A domain-specific language ide in the cloud using open-source only. [On-
line]. Available: https://github.com/TypeFox/theia-xtext-sprotty-example’

https://www.obeodesigner.com/resource/white-paper/WhitePaper_ XtextSirius _EN.pdf
https://www.obeodesigner.com/resource/white-paper/WhitePaper_ XtextSirius _EN.pdf
https://altran-mde.github.io/xtext-sirius-integration.io/
https://altran-mde.github.io/xtext-sirius-integration.io/
https://github.com/TypeFox/theia-xtext-sprotty-example

