
A Common Integrated Framework for
Heterogeneous Modeling Services

Anastasia Mavridou, Tamas Kecskes, Qishen Zhang, and Janos Sztipanovits
Vanderbilt University

firstname.lastname@vanderbilt.edu

ABSTRACT
Modeling languages are often used for designing complex systems.
To simplify the modeling process, system designers can use dedi-
cated modeling frameworks, which provide all necessary tools and
services in order to facilitate system development and decrease
costs by eliminating errors early at design time. Nowadays, the
emergence of heterogeneous engineering domains has led to de-
sign flows that span multiple Domain Specific Modeling Languages
(DSMLs). As a result, analyzing system behavior requires the se-
mantic integration of modeling domains through languages that are
supported by formal semantics, are easily adaptable, and provide
scalable and efficient correctness-checking services. To this end,
we present a framework that provides heterogeneous modeling ser-
vices that are based on the combination of two formalisms, 1) logics
and 2) graphs. On one hand, we use the FORMULA tool to formalize
the semantics of DSMLs and provide a common integrated semantic
background. On the other hand, we use graph queries specified in
Gremlin to employ efficient query and model analysis services. Our
framework offers a complete model-based engineering solution that
includes graphical modeling and version control services, which
are integrated into a web-based collaborative environment.

1 INTRODUCTION
Modeling frameworks are key enables of model-driven engineering.
They provide necessary tools and services to system designers in
order to facilitate system development and eliminate errors early
at design time. The adoption of model-engineering methods in
new cross-disciplinary fields such as Cyber-Physical Systems (CPS)
brings new challenges in modeling frameworks [17], which are now
required to provide heterogeneous services for capturing multi-
abstraction and multi-fidelity models expressed in many different
DSMLs. The list of DSMLs used is not static; it changes and evolves
depending on the application needs.

Analyzing system structure and behavior, and pursuing cross-
domain trade-offs requires the semantic integration of modeling
domains. To do that, modeling frameworks must be extensible
and adaptable to allow modeling in different DSMLs in a way that
their semantics are captured in a formal manner to allow rigor-
ously specifying model transformations. Additionally, modeling
frameworks are called to provide heterogeneous services that in-
clude 1) engineering services for graphical modeling, metamodel-
ing, version-control, etc.; 2) a common integrated semantic back-
ground represented in a formal language; 3) efficient and scalable
correctness-checking mechanisms.

On one hand, even though logic-based languages [5, 6, 15] can
be very effective for formally capturing constraints, model transfor-
mations and proof generations, they might not scale. On the other
hand, even though graph-based query languages [1, 16] can be very

efficient for model analysis and clustering, they cannot be used for
model synthesis and proof generation. We believe that a framework
that combines both languages, and thus, all their advantages, can
provide the expressiveness and the efficiency needed for modeling
and analyzing large, heterogeneous systems.

Our work is based on previous preliminary work presented in [8].
The primary contribution of [8] was the deep semantic integration
of WebGME [11], a meta-programmable modeling tool, with FOR-
MULA [6], a formal framework and tool for specifying DSMLs.
Deep integration requires that the engineering view of an evolving
model and its formal representation to be tightly synchronized.
The approach taken in [8] for the formalization of the WebGME
metamodeling language with FORMULA was specific to WebGME
and thus, cannot be generalized for other metamodeling languages.
Additionally, it did not support automatic derivation of confor-
mance constraints nor efficient querying through graph-database
languages. There are other works in the field [1, 18] that show the
integration of several aspects of our work, but they all lack some
of the functionalities we provide - either the capability of visual
editing and user defined constraints, or they are tied to a single
domain. Our contributions are threefold:

(1) We study and formally present the semantics of theWebGME
metamodeling language;

(2) We study a formal, abstract, easy-to-reason model based on
typed graphs for capturing the semantics of metamodeling
languages. Our approach eliminates as much as possible
error-prone user input by automatically deriving consistency
conditions that must be met. Additionally, our approach is
generic; we have applied it on the WebGME metamodeling
language but it can be applied to any other metamodeling
language.

(3) We develop a framework that provides heterogeneous ser-
vices, which are based on the combination of different for-
malisms. We use logic-based and graph-based languages and
study their relation.

Our web-based, open source1 framework provides a set of engi-
neering services. It allows real-time collaboration between multiple
developers. Project changes are committed and versioned, which
enables branching, merging and viewing the history of a project.

The organization of the paper is as follows. Section 2 provides
background information. Section 3 presents the theoretical founda-
tion of our approach, which is based on labeled and typed graphs
and first-order logic conformance conditions. Section 4 and 5 presents
the translation of the graphs and conformance conditions in FOR-
MULA and Gremlin languages, respectively. Section 6 discusses

1https://github.com/kecso/comif-hems

the translation of specific metamodel and model instances in FOR-
MULA and Gremlin, while also provides implementation details.
Section 7 concludes the paper.

2 METAMODELING ANDWEBGME
There exists a plethora of metamodeling languages and tools; Kern
et al. provide a comparative analysis [9]. In this paper, we use
the Web Generic Modeling Environment (WebGME) [11] meta-
programmable modeling tool. The metamodeling language of We-
bGME is shown in Figure 1 as a UML Class diagram [14].

A project in WebGME is a collection of metamodels and models.
When a user creates a new project, it contains the First Class
Object (FCO), which comprises the root of the inheritance hierarchy.
FCO has a fixed attribute name of type String, which is inherited
by all other objects. Additionally, objects may contain several other
attributes. An Attribute defines a property of an object, which
can be typed as String, Integer, Float, Enumeration, etc.

Figure 1: The WebGME metamodeling language.

Relations between objects include Pointer, Set membership,
Mixin, Inheritance, and Containment. Inheritance and Mixin
are similar to UML inheritance and UML realization, respectively.
Inheritance and Mixin are both associatedwith FCO by: 1) a strong
containment for their “sources”, i.e., baseOf, interfaceOf and
2) a weak association for their “destinations”, i.e., instanceOf,
implementationOf. The strong association denotes the fact that if
the base (resp. interface) of an inheritance (resp. mixin) relation is
deleted, the inheritance (resp. mixin) relation is deleted as well.

Furthermore, the Containment and Pointer are similar to a
UML containment and UML binary directed named association, re-
spectively. In the samemanner, Set membership is similar to a UML
directed named association between an instance of an owner object
type and an unordered set of member objects of another type. Set
membership can be considered as a collection of pointers. For all
three relations their source is associated with FCO through a strong
containment association and their destination is associated with
FCO through a weak association. All three relations have additional
user-defined properties. Set membership and Pointer include
property name of type String. Additionally, Containment and Set
membership include propery md of type UnlimitedNatural that
denotes the destination multiplicity of the child. The source mul-
tiplicities of Containment and Set membership are always 1. No-
tice that Inheritance, Pointer, and Mixin do not have the md
property because the multiplicities of their instances are not user

defined but fixed. The source multiplicities of each Inheritance,
Pointer, and Mixin instance are all equal to 1. The destination
multiplicities of each Inheritance, Pointer, and Mixin instance
are equal to ∗, 1, and ∗, respectively.

3 SEMANTIC FOUNDATIONS
Beforewe provide the formal definitions let us first give the intuition
behind our approach. We aim at describing the semantics of a
metamodeling language with an abstract, high-level language that
enables easy reasoning. Graphs provide such an abstract language
and have been studied extensively for representing metamodels
and models [10]. Additionally, we aim at describing the generic
conformance conditions at the meta-meta model level. So instead of
creating sets of rules — one set per relation instance —we generalize
these rules, by describing them at the meta-meta model level.

We define labeled graphs, which are directed graphs edge-labeled
with names and multiplicities, to specify (meta-)metamodels.

Definition 3.1. (Labeled graph). A labeled graph is a quadruple
L = ⟨V ,E, λv , λe ⟩, with a set of vertices V , a set of directed edges
E ⊆ V 2, and labeling functions 1) λv : V 7→ N and 2) λe : E 7→
I × N × I , where N is a set of names and I is a set of intervals of
the form = N2 ∪ N × {∗}.

For ease of presentation, we define the notation ∀e ∈ E, ∀v ∈ V :
• src(e) ∈ V denotes the source vertex of e ,
• dst(e) ∈ V denotes the destination vertex of e ,
• ms(e) ∈ I denotes the source multiplicity of e ,
• md(e) ∈ I denotes the destination multiplicity of e ,
• n(e), n(v) ∈ N denote the names of e and v , respectively.

We require the following uniqueness conditions:
• ∀v1,v2 ∈ V , if n(v1) = n(v2) then v1 = v2,
• ∀e1, e2 ∈ E, if src(e1) = src(e2), n(e1) = n(e2), and dst(e1) =
dst(e2) then e1 = e2 with source and destination multiplici-
tiesms(e1) ∪ms(e2) andmd(e1) ∪md(e2), respectively.

Next, we define Model graphs, which we use to specify models.

Definition 3.2. (Model graph).Amodel graph is a Labeled graph
M = ⟨V ,E, λv , λe ⟩ such that for all edges e ∈ E,ms(e) = md(e) =
[1, 1].

Typed graphs have been previously studied by the model trans-
formation community [4, 7]. We propose an extension of typed
graphs to check the model conformance, which allows to capture
inheritance defined between nodes of the metamodel.

Definition 3.3. (Typed graph). A typed graph is a quadruple
T = ⟨L,M,τv ,τe ⟩ where L and M are labeled and model graphs,
respectively; τv : VM ∪VL 7→ 2VL , τe : EM 7→ EL

Definition 3.3 describes the inheritance relation 1) between ver-
tices of the model or labeled graph and vertices of the labeled graph
and 2) edges of the model graph and edges of the labeled graph. The
L graph specifies a metamodel with node types and edge types. The
M graph is an instance model referencing these types. The type(s)
of each vertex v and edge e , ofM , is τv (v) and τe (e), respectively.

Definition 3.4. (Model conformance). For a typed graph T =
⟨L,M,τv ,τe ⟩, a model, represented by themodel graphM , conforms

to a metamodel, represented by the labeled directed graph L if a set
of conditions hold:

conforms(T) =
n∧
i=1

(i),

where (i) represents logical formulæ that are either 1) generic and
automatically derived from T or 2) application-specific and thus,
user-defined.

3.1 Automatically-derived Conditions
For a typed graph T = ⟨L,M,τv ,τe ⟩, we derive the following con-
formance conditions:

(1) ≜ ∀vM ∈ VM , ∃vL ∈ VL : vL ∈ τv (vM) .
Meaning of (1): for each vertex in the model graph there exists a
vertex in the labeled graph that characterizes its type.

(2) ≜ ∀eM ∈ EM , ∃eL ∈ EL :
τe (eM) = eL ∧ src(eL) ∈ τv (src(eM)) .

Meaning of (2): for each edge eM in the model graph, there exists
an edge eL in the labeled graph, such that eM is of type eL and the
source vertex of eM is of type of the source vertex of eL .

(3) ≜ ∀eM ∈ EM , ∃eL ∈ EL :
τe (eM) = eL ∧ dst(eL) ∈ τv (dst(eM)) .

Meaning of (3): for each edge eM in the model graph, there exists
an edge eL in the labeled graph, such that eM is of type eL and the
destination vertex of eM is of type of the destination vertex of eL .

(4) ≜ ∀vA ∈ VM ,∀eL ∈ EL ,∀VMS ⊆ VM ,∃vB ∈ VMS ,

∀eM ∈ EM : src(eL) < τv (vA) ∨ src(eM) , vA ∨
dst(eM) , vB ∨ τe (eM) , eL ∨ |VMS | ∈md(eL).

Meaning of (4): each vertex vA of the model graph is correctly
connected to a subset of the vertices of the model graph according
to the destination multiplicities of all the edges of the labeled graph
that are connected to the vertex that corresponds to the type of vA.

(5) ≜ ∀eL ∈ EL ,∀vM ∈ VM ,∃eM ∈ EM : src(eL) < τv (vM) ∨
0 ∈md(eL) ∨ (src(eM) = vM ∧ eL = τe (eM)) .

Meaning of (5): for each edge eL of the labeled graph there exists
at least an edge eM , which is an instance of eL in the model graph
if the corresponding destination cardinality of eL does not include
zero and there exists at least a node vM such that src(eM) = vM .

(6) ≜ ∀vA ∈ VM ,∀eL ∈ EL ,∀VMS ⊆ VM ,∃vB ∈ VMS ,

∀eM ∈ EM : src(eL) < τv (vA) ∨ src(eM) , vB ∨
dst(eM) , vA ∨ τe (eM) , eL ∨ |VMS | ∈ms(eL).

Meaning of (6): each vertex vA of the model graph is correctly
connected to a subset of the vertices of the model graph according
to the source multiplicities of all the edges of the labeled graph that
are connected to the vertex that corresponds to the type of vA.

(7) ≜ ∀eL ∈ EL ,∀vM ∈ VM ,∃eM ∈ EM : dst(eL) < τv (vM) ∨
∧ 0 ∈ms(eL) ∨ (dst(eM) = vM ∧ eL = τe (eM)) .

Meaning of (7): for each edge eL of the labeled graph there exists
at least an edge eM , which is an instance of eL in the model graph
if the corresponding source cardinality of eL does not include zero
and there exists at least a node vM such that dst(eM) = vM .

4 LOGIC-BASED FORMULA SPECIFICATION
FORMULA (Formal Modeling Using Logic Programming and Anal-
ysis) [6] is a specification language and tool that can be used to
formally model and verify specifications. It has been successfully
used to verify critical drivers in Windows [3].

Next, we show the equivalent specifications of a labeled, model
and typed graph in FORMULA. The complete specification is wrapped
in a domain block, which delimits a domain-specific abstraction.

The specification of a labeled graph is as follows:
MetaNode ::= new (name: String).
MetaEdge ::= new (name: String , src: MetaNode ,

dst: MetaNode , ms: Multiplicity , md: Multiplicity).
Multiplicity ::= new (low: Natural ,high: Natural + {"*"}).

FORMULA supports algebraic data types and these are used to en-
code user defined relations. For example, the first line of the labeled
graph specification declares a data type constructor MetaNode()
for instantiating meta-level nodes (VL). This constructor produces
MetaNode instances that have a field called name of type String.

Similarly, the specification of a model graph is as follows:
Node ::= new (name: String , type: MetaNode).
Edge ::= new (name: String , type: MetaEdge ,

src: Node , dst: Node).

For simplification, we have omitted the source and destination
multiplicities of a model graph since they are always equal to 1.

The inheritance relation between the nodes and edges of the
labeled andmodel graphs is defined through the typed graph. We use
the following transitive closure relation to specify node inheritance:
NodeInheritance ::= new (base: MetaNode ,

instance: MetaNode + Node).
NodeInstanceOf ::= (MetaNode , MetaNode + Node).
NodeInstanceOf(b,i) :- NodeInheritance(b,i) ;

NodeInheritance(b,m), NodeInstanceOf(m,i).

Edge inheritance can be directly checked through the type argu-
ment of each Edge. We additionally define the WrongMultiplicity
condition, which follows directly from the labeled graph definition.
WrongMult:-Multiplicity(low ,high), high !="*", low > high.

4.1 Automatically-derived Conditions
To generate the conditions presented in Section 3.1 in FORMULA,
for a typed graph T = ⟨L,M,τv ,τe ⟩, we take the negation of the
formulas. Due to space limitations we show the equivalent specifi-
cation for a subset of conditions. The negation of (2) is translated
to FORMULA as follows:
not2 :- e is Edge , no {m | m is MetaEdge ,

m = e.type , NodeInstanceOf(m.src ,e.src)}.

The negation of (4) is translated to FORMULA as the conjunction
of (not4a) and (not4b), which are defined as follows:
not4a :- n is Node , m is MetaEdge ,

NodeInstanceOf(m.src ,n),
count({s|s is Node , e is Edge (_,m,n,s)}) < m.md.low.

not4b :- n is Node , m is MetaEdge ,
NodeInstanceOf(m.src ,n), m.md.high != "*",
count({s|s is Node , e is Edge (_,m,n,s)}) > m.md.high.

The underscores denote “dont care” variables.

5 GRAPH-BASED GREMLIN SPECIFICATION
Graph databases use graph structures to represent and store data.
They allow to retrieve data of complex hierarchical structures in a
simple and fast manner, in comparison with relational databases.
We use the Gremlin traversal machine and language [16] by the
Apache TinkerPop Project. Gremlin provides a general graph data-
base interface that can be used on top of various industrial graph
database implementations. Our Gremlin graphs have vertices and
edges with a dedicated label property and a number of other prop-
erties. The MetaNodes and MetaEdges of the labeled graph are
specified in Gremlin as follows:
graph.addVertex('class ','MetaNode ','name',
'theNameOfTheMetaNode ');
graph.addVertex('class ','MetaEdge ','name',
'nameOfTheMetaEdge ');
ME.addEdge('src',sMN ,'min':0[,'max':1]);
ME.addEdge('dst',dMN ,'min':0[,'max':1]);

For every MetaEdge and MetaNode, a vertex is created in the graph
specification. These vertices have an extra class property for iden-
tifying their origin. To represent the src and dst properties of the
MetaEdge, we use labeled edges in the graph (ME is the MetaEdge
while sMN is the sourceMetaNode, and dMN is the destinationMetaN-
ode). In the edge specifications, the property max is not defined
if the interval does not have an upper bound. Model graph speci-
fications are identical to Meta graph specifications with the only
difference being that their class properties are either set to Node or
Edge. To represent the type property and the inheritance relation
among node types, we specify the additional edges:
nodeOrMetaNode.addEdge('type',metaNode);
edge.addEdge('type',metaEdge);

5.1 Automatically-derived Conditions
Similarly, we generate the conditions presented in Section 3.1 as
Gremlin queries. Due to space limitations we show the equivalent
specifications for conditions (2) and (4):
not2 = g.V().has('class ','Edge').not(

match(__.as('s').out('type').out('src').as('a'),
__.as('s').out('src').out('type').as('b')
.where('b',eq('a')))). hasNext ();

Query not2 uses the match step where multiple traversals can be
checked. For every Edge vertex it checks whether there is no match
based first on type and second on src edges, and continues by
checking for no match in the opposite order, i.e., first on src and
second on type. Similarly, queries not4a, not4b are as follows:
not4a = g.V().has('class ','MetaEdge ').match(__.as('m').

in('type'). groupCount ().by(out('src')).
order(local).by(values ,incr). select(values).
limit(local ,1).as('actual '),__.as('m').
outE('src'). properties('min'). value ().
as('allowed ').where('allowed ',gt('actual ')).
hasNext ();

not4b = g.V().has('class ','MetaEdge ').where(outE('src').
has('max')). match(__.as('m').in('type').

groupCount ().by(out('src')). order(local).
by(values ,decr). select(values).limit(local ,1).
as('actual '),__.as('m').outE('src').
properties('max').value ().as('allowed ').
where('allowed ',gt('actual ')). hasNext ();

6 INTEGRATION INTO THE DESIGNBIP TOOL
We apply our framework on the DesignBIP tool [13]. Behavior-
Interaction-Priority (BIP) is a component-based framework that has
been effectively used for the correct-by-construction development
of large systems [2, 12]. DesignBIP is a WebGME-based tool that
allows to graphically model and generate BIP systems.

6.1 Part of the DesignBIP Metamodel
The DesignBIP metamodel is partly shown in Figure 3. A Project
contains zero ormore ComponentType objects. Each ComponentType
contains at least one StateBase, at least one TransitionBase, and
zero or more Guard instances. A ComponentType contains exactly
one InitialState. StateBase is an abstract object, meaning that
it can only be instantiated as InitialState or State. Similarly,
TransitionBase is also an abstract object. The TransitionBase
object points to StateBase through the src and dst pointers.

6.1.1 DesignBIPmetamodel in FORMULA. Our dedicatedWebGME-
based FORMULA code editor parses the MetaNodes and then auto-
matically creates the corresponding FORMULA rules. The MetaN-
odes are specified in FORMULA as shown in the second row of
Figure 2. Next, the plugin parses the relations specified in the meta-
model and their multiplicities and creates multiplicity rules, e.g.,:

starMultiplicity is Multiplicity (0,"*").
exactlyOneMultiplicity is Multiplicity (1, 1).

As you can see in Figure 3, WebGME concepts have attributes of
type String and asset. The types of these attributes are modeled
as MetaNodes in the labeled graph, while the containment of an
attribute by a concept is modeled as a MetaEdge, as follows:

String is MetaNode("String").
metaAttr1 is MetaEdge("guardName", TransitionBase , String ,

starMultiplicity , exactlyOneMultiplicity)

Next, the plugin creates FORMULA rules for the additional
MetaEdge instances. Pointers are specified as shown in the fourth
row of Figure 2. Similarly, containments are specified as shown
in the second row of Figure 2. Set memberships are specified as
shown in the sixth row of Figure 2. Inheritance is specified with the
constructor NodeInheritance, as shown in the last row of Figure 2.

6.1.2 DesignBIP metamodel in Gremlin. To generate the graph
database queries, we have created a second translator. The equiva-
lent Gremlin specifications for the WebGME concepts and relations
are shown in Figure 2. A notable difference between the FORMULA
and Gremlin specifications is that the cardinalities are defined in the
form of min and max properties of edges of the graph. Additionally,
the unbounded cardinality intervals are simply represented by not
defining the max property. Another difference is the type edges.
They represent the NodeInstanceOf relationship which means that
every base of a MetaNode is directly connected and we do not have
to make long traversals to get the information.

Objects WebGME meta FORMULA translation Gremlin translation

Concept StateBase is MetaNode('StateBase');
StateBase = graph.addVertex(
'class','MetaNode','name','StateBase);

Containment
metaContainment1 is MetaEdge('metaContainment1',
ArchitectureStylesLibrary, ArchitectureStyle,
exactlyOneMultiplicity, starMultiplicity);

metaContainment1 = graph.addVertex(
'class', 'MetaEdge', 'name', 'metaContainment1');
MContainment1.addEdge('src',
ArchitectureStylesLibrary,'min',1,'max',1).

MContainment1.addEdge('dst',
ArchitectureStyle,'min',0);

Attribute

Guard_has_guardMethod is MetaEdge(
'guardMethod',Guard,String,
exactlyOneMultiplicity,starMultiplicity);

Guard_has_guardMethod = graph.addVertex(
'class','MetaEdge','name','guardMethod');

Guard_has_guardMethod.addEdge('src',Guard,
'min',0);

TransitionHasGuard.addEdge(
'dst',String,'min',1,'max',1);

Pointer
(one to one
association)

Connection_point_src_ConnectorEnd is MetaEdge(
'src',Connection, ConnectorEnd,
exactlyOneMultiplicity, exactlyOneMultiplicity);

Connection_point_src_ConnectorEnd = graph
.addVertex('class','MetaEdge','name','src');
Connection_point_src_ConnectorEnd.addEdge('src',
Connection,'min',0);
Connection_point_src_ConnectorEnd.addEdge('dst',
Connection,'min',1,'max',1);

Set
(many to many
association)

ComponentType_collects_ComponentType is MetaEdge(
'associatedWith', ComponentType, ComponentType,
exactlyOneMultiplicity, starMultiplicity);

ComponentType_collects_ComponentType = graph
.addVertex('class','MetaEdge',
'name','associatedWith');

ComponentType_collects_ComponentType.addEdge(
'src',ComponentType,'min',0);

ComponentType_collects_ComponentType.addEdge(
'dst',ComponentType,'min',0);

Inheritance
(identical to
Mixin)

NodeInheritance(StateBase, State);
State.addEdge('type',StateBase);

Figure 2: Patterns of translation into FORMULA and Gremlin of main WebGME meta-modeling language features.3/21/2018 anmavrid / BIP

https://cps-vo.org/group/BIP 1/1

associatedWith

0..*

0..*

1..*

1..1

src

dst

1..*

0..*

FCO

ATTRIBUTES+
name: string

CONSTRAINTS+
ASPECTS+

Project

ATTRIBUTES+
authors: string

briefDescription: string

detailedDescription: string

engineOutput: asset

icon: asset

CONSTRAINTS+
ASPECTS+

ComponentType

ATTRIBUTES+
cardinality: string

constructors: string

definitions: string

forwards: string

CONSTRAINTS+
ASPECTS+

State

ATTRIBUTES+
CONSTRAINTS+

ASPECTS+

StateBase
ATTRIBUTES+
CONSTRAINTS+

ASPECTS+

InitialState

ATTRIBUTES+
CONSTRAINTS+

ASPECTS+TransitionBase
<< Connection >>
ATTRIBUTES+

guardName: string

transitionMethod: string

CONSTRAINTS+
ASPECTS+

EnforceableTransition

<< Connection >>
ATTRIBUTES+
CONSTRAINTS+

ASPECTS+

InternalTransition

<< Connection >>
ATTRIBUTES+
CONSTRAINTS+

ASPECTS+

SpontaneousTransition

<< Connection >>
ATTRIBUTES+
CONSTRAINTS+

ASPECTS+

Guard

ATTRIBUTES+
guardMethod: string

CONSTRAINTS+
ASPECTS+

Figure 3: Part of the DesignBIP metamodel in WebGME.

6.2 DesignBIP Model Example
Let us now consider the DesignBIP FSM model shown in Figure 4.
The FSM has four states off, on, done, wait. The states are con-
nectedwith transitions that are of three types: EnforceableTransition,
SpontaneousTransition, and InternalTransition (Figure 3). Tran-
sitions on, off, and finished, illustrated by continuous lines,
are of type EnforceableTransition. Transition end, illustrated

Figure 4: Part of a DesignBIP model.

by a dashed line, is of type SpontaneousTransition. The last tran-
sition that does not have a name is of type InternalTransition.
The square-brackets labels [finished] and [!finished] denote
guards, i.e., predicates, on the end and internal transitions.

6.2.1 DesignBIP Model in FORMULA. We present a subset of
the automatically-generated FORMULA rules for the model shown
in Figure 4. Model nodes are instances of the Node type, e.g.,:

State2on is Node("on", State).

The evaluated attributes of the model are specified as nodes, e.g.,
the attribute guardName of the end transition is specified as follows:

modelAttr1 is Node("!finished", String).

The containment relation between the !finished attribute and the
end transition is specified through an Edge as follows:

modelContain1 is Edge("modelAttr1", metaAttr1 ,
SpontaneousTransition4end , modelAttr1)

Figure 5: Formula code editor.

Similarly, edge nodes for all relations except for inheritance are
generated as instances of the Edge type (Section 4), e.g.,:
modelPointer1 is Edge ("modelPointer1", metaPointer1src ,
EnforceableTransition3on , InitialState1off).

Inheritance relations between the nodes and metanodes are gen-
erated as instances of NodeInheritance type, e.g.,:
modelInheritance1 is NodeInheritance(State2on , State).

6.2.2 DesignBIP Model in Gremlin. Next, we present portions
of the generated Gremlin specification for the model of Figure 4.
For instance, the on state is specified in Gremlin as follows.
State2on = graph.addVertex('class ','Node', 'name','s2').
State2on.addEdge('type',State).
State2on.addEdge('type',StateBase).
State2on.addEdge('type',FCO).

The translation take cares of realizing the transitive closure of the
FORMULA definition of NodeInheritance. Similarly, the specifi-
cation of the guardname attribute in Gremlin is as follows:
modelAttr1.addEdge('type',String).
modelAttr1HasGuard = graph.addVertex('class ','Edge',
'guardName ','_t4').

modelAttr1HasGuard.addEdge('src',Transition4end).
modelAttr1HasGuard.addEdge('dst',modelAttr1).
modelAttr1HasGuard.addEdge('type',metaAttr1).

The specification of relations, for example the pointer relation
between state off and enforceable transition on, is as follows:
modelPointer1=graph.addVertex('class ','Edge','name','p1').
modelPointer1.addEdge('type',metaPointer1src).
metaPointer1.addEdge('src',EnforceableTransition3on).
metaPointer1.addEdge('dst',InitialState1off).

6.3 Implementation
To extend and allow the integration of these different representa-
tions, we developed two dedicated code editors (the FORMULA
one can be seen in Figure 5) to the WebGME. Both editors have
two types of content: 1) read-only content that is generated from
the visually created meta-model and model and 2) a user-defined
portion where the user can add any additional constraint. The
read-only part can only be altered by using the graphical model or
meta-model editor of the WebGME. The code-editors also provide
‘check-buttons’ to run an on-demand evaluation of the given model.
This is done through dedicated plugins that communicate with the
integrated FORMULA and Gremlin console engines to check the
well-formedness of the model. Though we have not completed any

extensive performance testing between the two representations,
our first tests show that conformance checking in Gremlin is more
scalable and efficient than a similar task in FORMULA. With the
BIP domain (having 49 MetaNodes and 39 MetaEdges) and a rela-
tively large model (4082 Nodes and 12670 Edges), the FORMULA
execution took 113s while the Gremlin remained under 1s.

7 CONCLUSION
This paper discusses the integration of WebGMEwith 1) FORMULA
a formal framework for specifying DSMLs and 2) Gremlin an graph-
based query language. The purpose of the integration has been the
construction of an advanced modeling tool that provides heteroge-
neous services. In particular, our framework provides: 1) extensive
model engineering services, such as graphical modeling interfaces,
scalable model repositories, a web-based architecture that allows
collaborative modeling which is backed-up by version control ser-
vices; 2) rigorous formal foundations through the integration of the
FORMULA language that can be used for specifying language se-
mantics, model transformation rules, automated consistency check-
ing, and model synthesis; 3) efficient Gremlin queries that can be
used for checking model conformance, clustering, and data analysis
of large and complex systems. In the future, we will use FORMULA
for model synthesis and proof generation.

8 ACKNOWLEDGMENT
This research was supported by the National Science Foundation
under award CNS-1521617.

REFERENCES
[1] Renzo Angles and Claudio Gutierrez. Querying rdf data from a graph database

perspective. In European Semantic Web Conference, pages 346–360, 2005.
[2] Ananda Basu, Matthieu Gallien, Charles Lesire, Thanh-Hung Nguyen, Saddek

Bensalem, Félix Ingrand, and Joseph Sifakis. Incremental component-based
construction and verification of a robotic system. In ECAI, volume 178, pages
631–635, 2008.

[3] Ankush Desai, Vivek Gupta, Ethan Jackson, Shaz Qadeer, Sriram Rajamani, and
Damien Zufferey. P: safe asynchronous event-driven programming. ACM SIG-
PLAN Notices, 48(6):321–332, 2013.

[4] H Ehrig, K Ehrig, U Prange, and G Taentzer. Fundamentals of algebraic graph
transformation. EATCS Series, 2006.

[5] Daniel Jackson. Automating first-order relational logic. InACM SIGSOFT Software
Engineering Notes, volume 25, pages 130–139. ACM, 2000.

[6] Ethan K Jackson, Eunsuk Kang, Markus Dahlweid, Dirk Seifert, and Thomas
Santen. Components, platforms and possibilities: towards generic automation
for mda. In Proceedings of the tenth ACM international conference on Embedded
software, pages 39–48. ACM, 2010.

[7] Frédéric Jouault and Jean Bézivin. Km3: a dsl for metamodel specification. In
International Conference on Formal Methods for Open Object-Based Distributed
Systems, pages 171–185. Springer, 2006.

[8] Tamas Kecskes, Qishen Zhang, and Janos Sztipanovits. Bridging engineering
and formal modeling: Webgme and formula integration. In Proceedings of the
fifth International Workshop on The Globalization of Modeling Languages.

[9] Heiko Kern, Axel Hummel, and Stefan Kühne. Towards a comparative analysis
of meta-metamodels. In Proceedings of the compilation of the co-located workshops
on DSM’11, TMC’11, AGERE! 2011, AOOPES’11, NEAT’11, & VMIL’11, pages 7–12.
ACM, 2011.

[10] AG Kleppe and Arend Rensink. On a graph-based semantics for UML class
and object diagrams. In Graph Transformation and Visual Modelling Techniques.
EASST, 2008.

[11] Miklós Maróti, Tamás Kecskés, Róbert Kereskényi, Brian Broll, Péter Völgyesi,
László Jurácz, Tihamer Levendovszky, and Ákos Lédeczi. Next generation (meta)
modeling: Web-and cloud-based collaborative tool infrastructure. MPM@ MoD-
ELS, 1237:41–60, 2014.

[12] Anastasia Mavridou, Emmanouela Stachtiari, Simon Bliudze, Anton Ivanov, Pana-
giotis Katsaros, and Joseph Sifakis. Architecture-based design: A satellite on-
board software case study. In International Conference on Formal Aspects of

Component Software, pages 260–279. Springer, 2016.
[13] Anastasia Mavridou, Joseph Sifakis, and Janos Sztipanovits. DesignBIP: A design

studio for modeling and generating systems with BIP. In Proc. of 1st International
Workshop on Methods and Tools for Rigorous System Design (MeTRiD), June 2018.

[14] Object Management Group (OMG). Unified Modeling Language, Version 2.5.
https://www.omg.org/spec/UML/2.5/About-UML/, 2015. [Accessed 1-May-2018].

[15] Mark Richters and Martin Gogolla. On formalizing the UML object constraint
language OCL. In International Conference on Conceptual Modeling, pages 449–464.
Springer, 1998.

[16] Marko A Rodriguez. The gremlin graph traversal machine and language (invited
talk). In Proceedings of the 15th Symposium on Database Programming Languages,
pages 1–10. ACM, 2015.

[17] Janos Sztipanovits, Ted Bapty, Xenofon Koutsoukos, Zsolt Lattmann, Sandeep
Neema, and Ethan Jackson. Model and tool integration platforms for cyber-
physical system design, 2018. URL dx.doi.org/10.1109/jproc.2018.2838530.

[18] Bahram Zarrin and Hubert Baumeister. An integrated framework to specify
domain-specific modeling languages. In 6th International Conference on Model-
Driven Engineering and Software Development, pages 83–94, 2018.

https://www.omg.org/spec/UML/2.5/About-UML/
dx.doi.org/10.1109/jproc.2018.2838530

	Abstract
	1 Introduction
	2 Metamodeling and WebGME
	3 Semantic Foundations
	3.1 Automatically-derived Conditions

	4 Logic-based FORMULA Specification
	4.1 Automatically-derived Conditions

	5 Graph-based Gremlin Specification
	5.1 Automatically-derived Conditions

	6 Integration into the DesignBIP tool
	6.1 Part of the DesignBIP Metamodel
	6.2 DesignBIP Model Example
	6.3 Implementation

	7 Conclusion
	8 Acknowledgment
	References

