
Revisiting Visitors for Modular Extension of DSMLs - Artifacts

Manuel Leduc, Thomas Degueule, Benoit Combemale, Tijs van der Storm and Olivier Barais

The Revisitor pattern is a language implementation pattern that enables independent extensibility of the
syntax and semantics of metamodel-based DSLs, with incremental compilation and without anticipation. It
is inspired by the Object Algebra design pattern and adapted to the specificities of metamodeling.

On top of the Revisitor pattern, we introduce ALE, a high-level language for semantics specification of
metamodels that compiles to Revisitors to support separate compilation of language modules.

ALE is tightly integrated with the Eclipse Modeling Framework (EMF) and relies on the Ecore meta-language
for the definition of the abstract syntax of DSLs. Operational semantics is defined with ALE using an
open-class-like mechanism. ALE is bundled a set of Eclipse plug-ins.

Artifacts

• MODELS’17 paper: http://gemoc.org/ale/revisitors/paper.pdf
• ALE Compiler: https://github.com/manuelleduc/ale-compiler/
• ALE Examples & Benchmarks: https://github.com/manuelleduc/ale-compiler-benchmarks/

ReMoDD: http://www.remodd.org/v1/content/ale-compiler-and-benchmarks

Instructions

Ale compiler

Installation

1. Download an Eclipse IDE for Java and DSL Developers (Neon.3) for your platform: http://www.eclipse.
org/downloads/packages/eclipse-ide-java-and-dsl-developers/neon3

2. Install the ale plugins using the update site: http://gemoc.org/ale/revisitors/updatesite/. Follow the
procedure and select every plugin available.

3. Restart your Eclipse environment
4. You’re all set!

Usage

The ALE plug-ins provide two main operations to the user:

• On an Ecore (*.ecore) metamodel: Right click -> ALE -> Generate Revisitor interface gener-
ates the corresponding Revisitor interface in the src directory of the current project

• On an ALE (*.ale) file: Right click -> ALE -> Generate Revisitor implementation generates
the corresponding Revisitor implementation in the src directory of the current project

• (note that Revisitor implementations depend on Revisitor interfaces and will not compile otherwise)

Building the updatesite

The Ale updatesite can be rebuild using ale.p2updatesite.

To do so import the projects from this repository in an Eclipse IDE for Java and DSL Developers (Neon.3)
(available here) workspace. Then open ale.p2updatesite/site.xml and click “Build All”. Wait for the build to
finish, you can now use the produced artifacts as an eclipse updatesite of Ale.

1

https://dl.acm.org/citation.cfm?id=2367167
https://www.eclipse.org/modeling/emf/
http://gemoc.org/ale/revisitors/paper.pdf
https://github.com/manuelleduc/ale-compiler/
https://github.com/manuelleduc/ale-compiler-benchmarks/
http://www.remodd.org/v1/content/ale-compiler-and-benchmarks
http://www.eclipse.org/downloads/packages/eclipse-ide-java-and-dsl-developers/neon3
http://www.eclipse.org/downloads/packages/eclipse-ide-java-and-dsl-developers/neon3
http://gemoc.org/ale/revisitors/updatesite/
http://help.eclipse.org/oxygen/index.jsp?topic=/org.eclipse.platform.doc.user/tasks/tasks-127.htm
./ale.p2updatesite
http://www.eclipse.org/downloads/packages/eclipse-ide-java-and-dsl-developers/neon3
./ale.p2updatesite/site.xml


Ale Examples & benchmarks

This repository is structured as follows:

• examples: Toy examples demonstrating semantics definition and language modularity in ALE
• fUML: An implementation of fUML using ALE inspired by the Model Execution Case of the Transfor-

mation Tool Contest 2015 (TTC’15).

Playing with the examples

1. Setup an ALE environment following the installation instructions
2. Clone this repository locally, eg. git clone https://github.com/manuelleduc/ale-compiler-benchmarks
3. Import all the projects contained in the examples directory in Eclipse ..* File -> Import -> Existing

Projects into Workspace ..* Select the examples directory as root directory in the dialog ..* Check
all the projects ..* Finish

• Each project contains a launch configuration that can be used to run it
• To re-generate the Revisitor interfaces: Right click -> ALE -> Generate Revisitor interface

on an Ecore file generates the corresponding Revisitor interface in the src directory of the current
project

• To re-generate the Revisitor implementations: Right click -> ALE -> Generate Revisitor
implementation on an ALE file generates the corresponding Revisitor implementation in the src
directory of the current project

Running the benchmarks

This repository contains benchmarks comparing different implementations of the execution semantics of
fUML. The concrete semantics code is common to all implementations: the only variation is the pattern used
to implement it.

• Interpreter: The reference implementation of TTC’15 following the Interpreter pattern
• Visitor: An implementation following the classical Visitor pattern
• EMF Switch: An implementation using the Switch mechanism of EMF
• MonolithicRevisitor: A first Revisitor implementation where the runtime concepts of the activity

diagram (Tokens, Offers, etc.) are already merged in a single metamodel
• ModularRevisitor: An alternative Revisitor implementation based on a static metamodel defining the

abstract syntax of activity diagrams and another metamodel defining the runtime concepts

The fUML/activitydiagram contains the reference implementation of activity diagrams from TTC’15, plus a
variant where the static concepts and the runtime concepts are modularly split in two different metamodels.

• For convenience, we provide pre-compiled JARs for all the projects and a Bash script that runs all of
the benchmarks one after the other:

1. Navigate to the ./fUML/benchmarks directory
2. Run the benchmarks: ./benchmark.sh or benchmark.bat

• Otherwise, import all the Eclipse projects contained in the fUML directory and wait for all of them to
compile without error

• Execute the BenchmarkGeneric class of the benchmark project of your choice (one per implementation
folder). BenchmarkGeneric’s main function expects 3 parameters:

1. The path to a folder with the *.xmi models of the benchmark
2. The name of the test to run (testperformance_variant1, testperformance_variant2, or testperfor-

mance_variant3)
3. A prefix for the *.csv file that will store the results

Each benchmark executes every performance test of the TTC’15 contest 500 times after 50 warmups everytime.

2

http://www.transformation-tool-contest.eu/2015/cfs.html
https://github.com/manuelleduc/ale-compiler
./fUML/benchmarks

	Revisiting Visitors for Modular Extension of DSMLs - Artifacts
	Artifacts
	Instructions
	Ale compiler
	Ale Examples & benchmarks



